
Data Request Format 2.0

Request for Comments • Revision 2 • September 2, 2009

K. Cahill, B. Hendricks, C. King, R. Neswold, J. Patrick, A. Petrov, and C. Schumann

Edited by Andrey Petrov <apetrov@fnal.gov>

Last version of this document: http://www-bd.fnal.gov/controls/public/drf2

Revision History

© 2009 Fermi Research Alliance, LLC.

Table Of Contents

Introduction1.

The Request Structure2.
Device Format3.
Property Format4.

Range Format5.
Field Format6.
Event Format7.
Test Vectors8.

1. Introduction

This document describes a uniform data request format for the use in applications, data acquisition protocols, and
the middleware (DAE, DPM) of the Fermilab Accelerator Control System.

The established practice of denominating control system's entities—devices, properties, and events—originates
from several protocols and APIs developed long time ago. Intuitive, yet somewhat ambiguous, the naming
conventions have never been fully documented independently of their implementations. As such, various pieces of

software interpret those concepts differently, making their own assumptions about the permitted syntax and
character sets. The further evolution of the control system calls for a review of the existing naming practices, in
order to make them more rational, remove ambiguity, and to formalize the syntax.

The Data Request Format, Version 2 (DRF2) is based on the existing naming conventions. It is backward
compatible, meaning that the new format will honor currently accepted device names, property qualifiers, array
indices and range denominators, event names, as well as relevant ACL property and field names. The new
format, however, may not be understood by the existing software, and it is intended only for new

implementations of data acquisition clients, middleware, and such. A standard DRF2 parser, fully compatible with
this document, is provided in both C++ and Java.

The principal features of DRF2 are:

The full data request includes five attributes: device, property, range, field, and event. This precisely
describes a quantum of data in the control system that a client wants to read or set. Normally, they are (or
directly translated to) the requisites of a single data pool entry (perhaps, excluding the field attribute). Note
that the reference to a model is not included in the set of attributes, which makes the data request invariant
to a redirection.
The format is lenient and requires only a device name to be specified. One data can be requested in several

Data Request Format 2.0 http://www-bd.fnal.gov/controls/public/drf2/

1 of 7 8/22/2011 8:52 AM

ways.
There is one canonical form for each semantically distinct request.

Within the standard parser, the syntactic validation of a request and its conversion to the canonical notation
is performed off-line without consulting external resources.
The canonical form of a data request can be used as a unique key for a data pool entry. Note however,

that due to the complexity of the underlying control system it is impossible to tell, without checking the
database, whether two semantically different requests are, in fact, distinct.

This document uses a BNF-like grammar (similar to one from RFC2396) to describe the syntax of DRF2. The

following definitions are common to many elements:

upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J"
 | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T"
 | "U" | "V" | "W" | "X" | "Y" | "Z"

lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j"
 | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t"
 | "u" | "v" | "w" | "x" | "y" | "z"

alpha = upalpha | lowalpha

dec-digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

dec-number = 1*(dec-digit)

hex-digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
 | "A" | "B" | "C" | "D" | "E" | "F"
 | "a" | "b" | "c" | "d" | "e" | "f"

hex-number = 1*(hex-digit)

; Canonical forms

c-dec-number = <A dec-number with no leading zeroes>

c-hex-number = <A hex-number with no leading zeroes and all chars capitalized>

2. The Request Structure

The data request is defined as a case-insensitive text string with all characters in the ASCII range 0x21 (“!”) to

0x7E (“~”).

The request includes an ordered sequence of up to five attributes: device, property, range, field, and event. The
only required attribute is device.

request = device ["." property] [range] ["." field] ["@" event]

In the canonical form of a request each attribute is individually transformed to its canonical notation. A missing

property attribute is replaced with its default value, as described in §4. The range, field, and event attributes are
present in the canonical form only if their values are not default. The notion of a NULL attribute used later in this
document describes the entire attribute absent from the request along with its delimiter, not the delimiter and an
empty string.

3. Device Format

The device attribute specifies a long ACNET device name. For devices existed before the introduction of long
names, a long name is the same to a short 8-character name. A long device name contains 3 to 64 characters

and begins with a letter. The second character may designate a default property.

device = dev-pref prop-qualifier 1*62(dev-char)

dev-pref = alpha

dev-char = alpha | dec-digit | "_" | ":"

prop-qualifier = ":" ; Reading and canonical
 | ";" ; Reading, Java style
 | "?" ; Reading, ACL style
 | "_" ; Setting

Data Request Format 2.0 http://www-bd.fnal.gov/controls/public/drf2/

2 of 7 8/22/2011 8:52 AM

 | "|" ; Basic Status
 | "&" ; Basic Control
 | "@" ; Analog Alarm
 | "$" ; Digital Alarm
 | "~" ; Description

In the canonical form the property qualifier is changed to a colon. Whenever possible, the original character case
shall be preserved to facititate recognition of device names by the users.

; Canonical

c-device = dev-pref ":" 1*62(dev-char)

4. Property Format

The property attribute specifies the name of a property within the device. The format supports seven properties:
Reading, Setting, Basic Status, Basic Control, Analog Alarm, Digital Alarm, and Description. This list may be

extended in the future. Each property has one canonical name and several synonyms.

The default property is specified by a property qualifier inside the device name. If a property is explicitly specified
in a request, the property qualifier inside the device name must either match that property or be a colon.

; Canonical property names are in the upper case

property = reading
 | setting
 | basic-status
 | basic-control
 | analog-alarm
 | digital-alarm
 | description

reading = "READING" ; Canonical
 | "READ" | "PRREAD"

setting = "SETTING" ; Canonical
 | "SET" | "PRSET"

basic-status = "STATUS" ; Canonical
 | "BASIC_STATUS" | "STS" | "PRBSTS"

basic-control = "CONTROL" ; Canonical
 | "BASIC_CONTROL" | "CTRL" | "PRBCTL"

analog-alarm = "ANALOG" ; Canonical
 | "ANALOG_ALARM" | "AA" | "PRANAB"

digital-alarm = "DIGITAL" ; Canonical
 | "DIGITAL_ALARM" | "DA" | "PRDABL"

description = "DESCRIPTION" ; Canonical
 | "DESC" | "PRDESC"

5. Range Format

The range attribute addresses an individual element or a sequence of elements in the data set.

A data set can be viewed either as an array of homogenous components or as a sequence of raw bytes.
Accordingly, a range may be specified in two forms, depending on which model is used. Array indices are

enclosed in brackets, a byte offset and a length are enclosed in braces. One shall make no assumption, based on
a form of the range, whether the request asks for raw or scaled data. The bytewise form is deprecated, because
it requires the users to know low-level details of data representation and is prone to scaling errors.

range = full-range
 | array-range
 | byte-range
 ; Default is "[0]"

full-range = "[]" | "[:]" | "[0:]"
 | "{}" | "{:}" | "{0:}"

array-range = ("[" start-index "]") ; end-index = start-index

Data Request Format 2.0 http://www-bd.fnal.gov/controls/public/drf2/

3 of 7 8/22/2011 8:52 AM

 | ("[" start-index ":" "]") ; up to the end
 | ("[" ":" end-index "]") ; start-index = 0
 | ("[" start-index ":" end-index "]")

 ; 0 ≤ start-index ≤ end-index < 231

byte-range = ("{" offset "}") ; length = 1
 | ("{" offset ":" "}") ; up to the end
 | ("{" ":" length "}") ; offset = 0
 | ("{" offset ":" length "}")

 ; 0 ≤ offset < 231

 ; length > 0

 ; offset + length ≤ 231

start-index = dec-number

end-index = dec-number

offset = dec-number

length = dec-number

The canonical form of a range is defined as follows:

; Canonical

c-range = c-full-range
 | c-array-range
 | c-byte-range

c-full-range = "[]"

c-array-range = NULL ; =[0]
 ("[" c-start-index "]") ; c-start-index > 0
 | ("[" c-start-index ":" "]") ; c-start-index ≥ 0
 | ("[" c-start-index ":" c-end-index "]") ; 0 ≤ c-start-index < c-end-index

c-array-range = ("{" c-offset "}") ; c-offset ≥ 0
 | ("{" c-offset ":" "}") ; c-offset ≥ 0
 | ("{" c-offset ":" c-length "}") ; c-length > 1

c-start-index = c-dec-number

c-end-index = c-dec-number

c-offset = c-dec-number

c-length = c-dec-number

6. Field Format

The field attribute specifies a flavor of data, such as raw, scaled, or a particular field inside a complex structure.
Each property has its own set of valid fields.

Fields can be static or dynamic. All static fields are pre-defined, so that the parser can process them off-line (e.g.,

change field names upon the convertion to the canonical form). The set of possible dynamic fields may depend on
the device and is unknown to the parser. The validity of dynamic fields can not be verified.

; Canonical field names are in the upper case.

field = reading-fld
 | setting-fld
 | status-fld
 | control-fld
 | analog-fld
 | digital-fld
 | description-fld

reading-fld = "RAW"
 | "PRIMARY" | "VOLTS" ; Canonical is "PRIMARY"
 | "SCALED" | "COMMON" ; Default

setting-fld = "RAW"
 | "PRIMARY" | "VOLTS" ; Canonical is "PRIMARY"
 | "SCALED" | "COMMON" ; Default

Data Request Format 2.0 http://www-bd.fnal.gov/controls/public/drf2/

4 of 7 8/22/2011 8:52 AM

status-fld = "RAW"
 | "SCALED" | "COMMON" ; Default
 | dynamic-fld

control-fld = NULL ; Default

analog-fld = NULL ; Default
 | "MIN" | "MINIMUM" ; Canonical is "MIN"
 | "MAX" | "MAXIMUM" ; Canonical is "MAX"
 | "NOM" | "NOMINAL" | "ANALOG_NOMINAL" ; Canonical is "NOM"
 | "TOL" | "TOLERANCE" ; Canonical is "TOL"
 | "ALARM_ENABLE"
 | "ALARM_STATUS"
 | "TRIES_NEEDED"
 | "TRIES_NOW"
 | "ALARM_FTD"
 | "ABORT"
 | "ABORT_INHIBIT"
 | "LIMIT_TYPE"
 | "FLAGS"
 | "RAW"

digital-fld = NULL ; Default
 | "NOM" | "NOMINAL" ; Canonical is "NOM"
 | "MASK"
 | "ALARM_ENABLE"
 | "ALARM_STATUS"
 | "TRIES_NEEDED"
 | "TRIES_NOW"
 | "ALARM_FTD"
 | "ABORT"
 | "ABORT_INHIBIT"
 | "FLAGS"
 | "RAW"

description-fld = NULL ; Default

dynamic-fld = dynamic-pref 0*63(dynamic-char)

dynamic-pref = alpha | "_"

dynamic-char = alpha | dec-digit | "_"

; Canonical

c-dynamic-fld = c-dynamic-pref 0*63(c-dynamic-char)

c-dynamic-pref = c-alpha | "_"

c-dynamic-char = c-alpha | dec-digit | "_"

7. Event Format

The event attribute specifies on which moments of time the data should be read or set. The syntax of event
descriptors is similar to one used in the Get32 protocol and in the DataEventFactory class.

event = default-evt
 | immediate-evt
 | periodic-evt
 | clock-evt
 | state-evt
 ; Default is "U"

default-evt = "U"

immediate-evt = "I"

periodic-evt = "P" ["," period ["," flag]]
 ; Default period is "1000"
 ; Default flag is "TRUE"

 ; 0 < period < 231

period = dec-number ; Period in milliseconds

flag = "TRUE" | "FALSE" | "T" | "F" ; Immediate notification flag

Data Request Format 2.0 http://www-bd.fnal.gov/controls/public/drf2/

5 of 7 8/22/2011 8:52 AM

clock-evt = "E," evt-number ["," type ["," delay]]
 ; Default type is "E"
 ; Default delay is "0"

 ; 0 ≤ evt-number < 216

 ; 0 ≤ delay < 231

evt-number = hex-number ; Event number

type = "H" | "S" | "E" ; Hardware / Software / Either One

delay = dec-number ; Delay in milliseconds after an S event

state-evt = "S," source "," value "," delay "," expression

 ; 0 ≤ value < 216

source = c-device | device-index

 ; 0 ≤ device-index < 231

device-index = dec-number

value = dec-number

expression = "=" | "!=" | ">" | "<" | "<=" | ">=" | "*"

The canonical form of an event is defined as follows:

;Canonical

c-event = c-default-evt
 | c-immediate-evt
 | c-periodic-evt
 | c-clock-evt
 | c-state-evt

c-default-evt = NULL

c-immediate-evt = "I"

c-periodic-evt = "P," c-period "," c-flag

c-period = c-dec-number

c-flag = "TRUE" | "FALSE"

c-clock-evt = "E," c-evt-number "," c-type "," c-delay

c-evt-number = c-hex-number

c-type = "H" | "S" | "E"

c-delay = c-dec-number

c-state-evt = "S," c-source "," c-value "," c-delay "," c-expression

c-source = c-device | c-device-index

c-device-index = c-dec-number

c-value = c-dec-number

c-expression = "=" | "!=" | ">" | "<" | "<=" | ">=" | "*"

8. Test Vectors

Valid requests:

Input Canonical Form

m:outtmp m:outtmp.READING

C:A7CVPF.SET@U C:A7CVPF.SETTING

I~BEAM I:BEAM.DESCRIPTION

Z@Void[0] Z:Void.ANALOG

Data Request Format 2.0 http://www-bd.fnal.gov/controls/public/drf2/

6 of 7 8/22/2011 8:52 AM

u@cpsts.alarm_enable@p,0333,f u:cpsts.ANALOG.ALARM_ENABLE@P,333,FALSE

G_WYFI2M{}.RAW@p G:WYFI2M.SETTING[].RAW@P,1000,TRUE

"L:W5H{0:}.RAW L:W5H.READING[].RAW

T:baigsd.prdabl[:7]@e,2a T:baigsd.DIGITAL[0:7]@E,2A,E,0

C_BAVGX.VOLTS C:BAVGX.SETTING.PRIMARY

c|boq2f.dynamic_foo@s,V:Test,233,0,* c:boq2f.STATUS.DYNAMIC_FOO@S,V:Test,233,0,*

c?frau1dh{:4}.raw@i c:frau1dh.READING{0:4}.RAW@I

d:PD_KLY1:Kly:Cplr:FwdPwr.aa.nom@u d:PD_KLY1:Kly:Cplr:FwdPwr.ANALOG.NOM

Invalid requests:

Input Error

T:QX Ing Illegal whitespace

t:sq+z0 Illegal “+” character

S^SYPI1 Illegal property qualifier

z_cache.read The property qualifier doesn't match the property attribute

c:frau1dh.raw{:4}@i The range attribute is misplaced

c:void.rd Illegal property name

b:trzdk.setting.bytes Illegal field name

m:blow.scaled.reading Illegal order of attributes

L:TR0KK[7:1] Illegal end index

M:ZZ0@S,V:TEST Incomplete state event

$Id: drf2.html,v 1.22 2009/09/02 17:54:27 apetrov Exp $

Security, Privacy, Legal

Data Request Format 2.0 http://www-bd.fnal.gov/controls/public/drf2/

7 of 7 8/22/2011 8:52 AM

