
Abstract
The Xilinx XC6200 is the first commercially available FPGA to be specifically designed for use within

microprocessor-based systems. This paper discusses the architecture of the key element in this device: the

FastMapTM processor interface. Salient features of the user-programmable part of the XC6200 are also
described.

1 Introduction

Almost all modern digital systems consist of three major functional components: microprocessors, memories and
logic ICs. Logic ICs interface microprocessors to physical devices such as screens, keyboards and networks and per-
form computations which are unsuited to the microprocessor. Logic may be implemented using mask programmed
devices or Field Programmable Gate Arrays (FPGA’s) [1]. An interesting question is: What would the ideal logic
part, from the point of view of a microprocessor, look like?

• Processors view the world as a sequence of memory locations. Therefore the interface to the FPGA should be
through memory mapped registers.

• Processors run different programs at different times. FPGAs should therefore be able to be reconfigured for differ-
ent tasks at different times.

• Since processors are synchronous devices the FPGA should be able to operate from the same clock as the proces-
sor, thereby allowing predictable interactions between them.

• The FPGA should be dense and fast and have good I/O capability.

2 Memory Mapped I/O

The concept of memory mapped I/O is simple: a particular register within the user’s design selected via the proces-
sor address bus is connected to the processor data bus and a read or write operation is performed. The address selec-
tion and connection to the external bus is typically implemented using multiplexors and gates within the FPGA’s user
resources, although this has several disadvantages.

• The interface to a modern processor is complex and high speed and can use up large quantities of user logic and
IOB resources.

• If the registers which are to be accessed from the processor are placed near the centre of the device, long routing
wires are required to reach user IOBs. If many registers are to be provided, complex selection circuitry is necessary.

When one considers that the control memory of an FPGA is itself a static RAM, with address and data busses avail-
able on the device, it becomes clear that these resources could be presented off the chip as the primary programming
interface rather than being hidden behind a serial channel. Naturally, this requires many more pins to support wide
address and data busses, and so is not appropriate in many applications. However where the device must work with a
microprocessor it is advantageous.

The XC6200 FastMapTM Processor Interface

Stephen Churcher, Tom Kean, and Bill Wilkie
Xilinx Inc.

(presented by Raj Patel)

Register resources on the FPGA can be addressed using bit and word lines within the RAM array in the same way
as configuration memory cells, and their contents presented on the external data bus. This technique was first imple-
mented in the Algotronix CAL1024 chip [2]. Algotronix technology was acquired by Xilinx in 1993, and has been
continuously developed since then resulting in the XC6200 family. Figure 1 shows the first device in the family, the
XC6216.

Several additional steps are required to turn user registers, mapped into the device configuration memory, into a
high bandwidth channel transferring 32 bit words between the processor and the user design on the FPGA. Firstly,
the register bits, which will be physically dispersed among the configuration bits, must be collected together in the
address space so that complete words of register memory are formed. This is achieved in the memory row and col-
umn decoders. Secondly, some flexibility must be provided in the mapping of register bits which are to be accessed
in this way onto device cells - ideally a set of user registers located in arbitrary parts of the device could be grouped
into a word of memory accessible through the processor interface.

The row and column (bit line and word line) addressing scheme used by memories makes collecting arbitrary reg-
isters on the device into a single word difficult: a realistic constraint is that all the registers should be in the same col-
umn of cells. An issue also arises concerning the manner in which bits in the processor word are mapped into
registers. If full flexibility was allowed, 6 bits (to select one of 64 cell positions in a column) would be required for
each of the 32 data bus bits. This is too much information to change quickly, in order to allow selection between dif-
ferent registers. A realistic limitation is that the bits appear in order in the processor word with the register with the
lowest cell y-coordinate first. Given this constraint, the locations of the register bits can be specified with a 64 bit
map register - a 0 in the map register (for example) indicates that the cell with the corresponding y-coordinate will
take part in the transfer. This technique allows the registers to be spread out over the column in an arbitrary manner
and can be implemented relatively efficiently in the RAM bit line logic. Figure 2 shows an example of accessing a
register within user logic via an 8 bit external bus on the XC6216.

5757

64

64

64x64
Cell Array

64 I/O North

64 I/O South

Column Decode
Control

Global

64
I/O

W
E
S
T

Row

D
e
c
o
d
e

64
I/O

E
A
S
T

I/O

Figure 1 : XC6216 Architecture

3 Dynamic Reconfiguration.

SRAM-based FPGAs are inherently capable of dynamic and partial reconfiguration; all that is required is to bring
the internal RAM data and address busses onto device pins, as was done on the Algotronix CAL1024 part. The
XC6200 family is configurable to provide an 8, 16, or 32 bit external data bus, and a 16 bit address bus. Using these
features, the entire configuration memory can be programmed in under 100 µs.

Normally, however, it is not necessary to program the entire device. In such cases, the random access feature allows
arbitrary areas of the memory to be changed. In addition, a mask register is provided which allows a subset of bits
within a word to be masked out of a transfer to the memory. This is useful because often a user will wish to reconfig-
ure a particular logical resource (e.g. a routing multiplexor) which will represent only a small fraction of the bits
within a word of program memory. This feature is particularly attractive in combination with the wildcard registers
discussed below.

Another property of FPGA configurations, particularly datapath-type designs, is that they are very regular, i.e. the
same pattern of bits may appear at many locations in the memory (e.g. each slice in a 32 bit datapath). The XC6200
supports writing the same configuration information to multiple locations in the control memory simultaneously,
using so-called ‘wildcard’ registers. These registers modify the row and column addresses supplied to the chip, put-
ting ‘don’t cares’ on corresponding address bits. For example when one address bit is subject to a ‘don’t care’ condi-
tion, two memory locations will be written simultaneously on every transfer (Figure 3). Using the wildcard
addresses, the configuration memory for all the cells on the chip can be cleared in a single memory cycle. Most user
designs will use a fraction of the chip’s resources, and in such cases it will often be faster to clear the configuration

Data
Bus

Map Register

8-Bit Data Bus Example

Bit 0

User-defined register within array

Cells
Address
Decode

Address
Bus

CPU
InterfaceRdWr

CS Write Enable

Bit 3

Bit 5

Bit 6

0

0

0

0

1
1

1

1

1
1
1
1

1

1

1

0

0

0

0

Bit 1

Bit 2

Bit 4

Bit 7

Figure 2 : Map Register - Principles of Operation

4 Synchronous Access.

The communication between the processor and the FPGA can function most effectively when they are both run-
ning from a common clock. This synchronizes input and output of data through the processor interface with compu-
tations running in the user logic and ensures that setup time requirements are met on write accesses to user registers
and that read accesses obtain valid data. For this reason the clock signal for the processor interface is also supplied as
one of four low skew global signals to the user logic [3].

As well as synchronizing FPGA and processor communication, it is useful to provide a mechanism for signalling
to the user logic that a transfer to or from a register has occurred. This allows the user logic to begin processing an
input value or to start computing a new output value. This function could be implemented by using a second user reg-
ister as a flag to indicate transfers, but this would double the number of processor accesses required. Instead, bit and
word lines used for transfers to user registers are made available as inputs to programmable routing switches within
the array. By connecting these wires to logic gates within their design, users can monitor the transfers through the
processor interface and take appropriate action.

R
ow

 A
dd

re
ss

 D
ec

od
e

21
R

ow
 A

dd
re

ss
 D

ec
od

e
21 R

ow
 A

dd
re

ss
 D

ec
od

e

53
52

16

23

Wildcard
Address

100001
010101

000111
010101

000000
010101

20
.
.
.

8-Bit Data Bus

Figure 3 : Wild Card System

5 Density and Performance.

The first member of the XC6200 family, the XC6216, contains a 64x64 array of fine grain programmable logic
cells. Each of these can implement any logic function of two variables, or act as a 2:1 multiplexor. In addition to these
combinatorial resources, each cell contains a register which may be used in consort with the logic function generator
in a variety of ways, as shown in Figure 4. Finally, each cell in the array contains four interconnection multiplexors,
which provide ‘nearest neighbour’ routing resources for up to four independent signals.

The routing architecture of the XC6200 is depicted in Figure 5, and is a hierarchical structure with neighbour con-
nections between cells, wires which span 4 cell blocks, wires which span 16 cell blocks and wires which cross the
complete 64x64 cell array. There are also four global signals (clock, clear, and two user defined signals). These con-

figurable connections, when combined with the ‘wireless’ I/O capability afforded by theFastMapTM interface, pro-
vide users of the XC6200 with a powerful, flexible combination of routing resources.

The XC6200 family is implemented in 0.6 µm triple metal CMOS technology, and is expected to meet state-of-the-
art system performance criteria. At the time of writing, full performance figures were unavailable. The equivalent gate
count for the XC6216 is 16k gates for typical applications; however this figure is potentially as high as 50k gates for
designs which are particularly register intensive. Smaller and larger family members will also be made available.

ZERO

ONE

BUF
A

INV

A

A

B
AND2

A

B
AND2B1

A

B
NAND2

A

B
NAND2B1

A

B
OR2

A

B
OR2B1

A

B
NOR2

A

B
NOR2B1

A

B
XOR2

A

B
XNOR2

A

B

SEL

A

B

SEL

A

B

SEL

A

B

SEL

D Q

CLK

CLR

A
B D Q

CLK

CLR

AF F D Q

CLK

CLR

A
F

M2_1

M2_1B1A

M2_1B1B

M2_1B2

SEL SEL SEL

A
B

SEL

F

Figure 4 : XC6200 Function Unit Logic Configurations

6 Summary

The XC6200 family [3] is the first commercial FPGA to address the requirements of interfacing programmable
logic to microprocessors. With its combination of dedicated random access parallel interface, flexible hierarchical
routing, and powerful fine grain logic function generator, the XC6200 is especially suited to ‘embedded processing’
applications where high bandwidth peripheral devices must be interfaced to a computer system, and processing of the
incoming or outgoing data stream is required.

References

1. The Programmable Logic Data Book, Xilinx Inc, San Jose CA, 1994.

2. CAL1024 Data Sheet, Algotronix Ltd., Edinburgh UK 1990.

3. Xilinx XC6200 Family Preliminary Product Description, Xilinx Inc, San Jose CA 1995.

16x16

Each Arrow = Sixteen Length 64 FastLane

16x16 16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

64 User IOB’s (1 per border cells)

Signals

Figure 5 : XC6216 Hierarchical Routing

