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Abstract:

 

 The complexity of the software required in the forthcoming control systems for LHC experiments necessi-
tates a re-think of the strategies employed in the design of such systems. Use of software engineering standards and
systems development methodologies are required to ensure the success of High Energy Physics (HEP) control system
design. The CERN RD-38 (CICERO) project aims to use modern software engineering methods such as Object Ori-
entation to design the main building blocks of a generic control information system which will be based on the dis-
tributed object standard, CORBA [1]. This paper outlines conclusions that can be drawn from the use of Object
Orientation and the ESA standards in the design of Cortex [2], an integrating environment which enables user control
objects to be ‘plugged and played’ in CICERO.

 

1  The Cortex approach to Designing HEP Control Systems

 

The large number and variety of parameters that require monitoring in HEP experiments as well as the complexity of
the software to perform that monitoring and control has forced systems designers to reconsider the entire design of
HEP control systems [3]. The increase in the numbers of sensors and in functionality required by these experiments
has led inevitably to the construction of very heterogeneous and distributed control systems where integration and
communication between the different detector (sub-)systems has become an issue. It is only by reducing the apparent
complexity of the control system that the operation of these systems and their overall maintenance can be efficiently
handled by physicists. In addition, since these experiments evolve over time, any HEP control system must also be
scalable and flexible to change and provide reusability of its constituent components. 

To help reduce development costs and to simplify the apparent complexity of the HEP control systems, physicists are
looking for partially reusable solutions to their technical problems. However, in the recent past it has proved difficult
to integrate commercial products together (such as PLCs with front-end VME crates) and to integrate these products
with existing CERN-made control (sub-)systems [4]. In essence, what is required by those responsible for HEP con-
trol systems is an overall framework to facilitate integration between control system components. Such a framework
(or software integration platform) should go beyond defining standard interfaces; its design should guarantee that
commercial products and 'home-grown' systems can exchange information and collaborate regardless of the organisa-
tion of the overall control system. The CICERO research and development project, involving both academic institutes
and industrial partners, aims amongst other things to investigate the use of Object Oriented Design (OOD) techniques
and distributed system standards in providing an integration framework (Cortex) to simplify HEP control systems
design. The Cortex design concepts are described in another paper contributed to this conference [5].

Experience of the development of control systems for the LEP experiments [3] and anticipation of the increased
demands which will be generated by the new and larger experiments for LHC, has identified the main constraints for
the design of such an integrating scheme. Firstly, since the LHC experiments will be equipped with > 100,000 sensors
and activators, the 

 

management of control system complexity

 

 is a major consideration. Object-oriented design tech-
niques embodying abstraction, inheritance and the use of classes and objects will aid the design here. Secondly the
problem of 

 

concurrent and collaborative software engineering

 

 requires addressing. This is particularly true when the
development of the control software is carried out by engineers who are separated geographically. Thirdly, the soft-
ware developed should provide 

 

stability, flexibility and availability

 

 of control system elements so that system down-
time (both for repair and for upgrades) is minimised. Finally, the control system software should provide 

 

balanced,
distributed processing

 

 in the heterogeneous environment of High Energy Physics (HEP) control systems.

The architecture of any distributed control system will inevitably change during the lifetime of the accelerator or the
experiment it is operating. As a consequence, Cortex must support a mechanism to allow a new version of the distrib-
uted control system to be in preparation off-line while an older one is operated on-line. Furthermore this off-line/on-
line facility is needed since tests and validation (and possibly simulations) of a new configuration will be needed
before it is applied to the operating on-line system. These constraints have led to a so-called dual-face approach being
taken in CICERO for the Cortex integrating framework:

* an off-line Cortex Repository is proposed to handle the logical descriptions of the architecture of the distributed



 

control system and to describe the various information and commands to be exchanged between the different compo-
nents. 

* an on-line Cortex Infrastructure is proposed comprising so-called Distributors through which the User (control)
Components can exchange information and commands in a pseudo- 'plug-and-play' fashion. A generation mechanism
is provided to facilitate updates of the on-line Infrastructure according to the Repository contents.

The physicist then builds a logical model of the required control system architecture off-line in the Cortex Repository,
specifying detail at the configuration level to enable updates to be carried out on the existing architecture. These
updates are validated against the existing architecture and the generation procedure instantiates the updates and cre-
ates the new updated Cortex Infrastructure. The details behind the operation of Cortex have been dealt with elsewhere
[6] & [7]; this paper examines the design approach taken in implementing the building blocks behind Cortex. In par-
ticular, section 2 investigates constraints on the Cortex design approach and section 3 outlines the methods followed
in delivering a Cortex prototype. A critique of this approach is presented in section 4 and conclusions are drawn in the
final section.

 

2  The Need for Software Engineering in the Design of HEP Control Systems

 

Historically, high energy physicists have been slow in adopting the software engineering methods of computer scien-
tists. The systems developed in HEP have often responded to the development needs on an ad-hoc basis, with many
short term solutions to similar problems [3]. Structured software development methods have been used [8] for the
analysis and design of control systems for HEP experiments at LEP. Since then, experience of structured software
engineering methods and CASE tools has increased at CERN [9], [10]. As yet, however, there have only been a few
examples of the use of OOD methods in the design of control systems at CERN. One notable exception is that of
Myers et al [11] which investigated the use of OOD in a controls environment. In industry, OOD techniques are more
prevalent and have been used in the design of control systems for Supervisory Control And Data Acquisition
(SCADA). Ericsson et al [12], advocate both the use of object design techniques and the use of CORBA as the dis-
tributed communication platform for control systems. The CICERO project is using both OOD and CORBA to
implement a generic control information system for LHC experiments.

As HEP control systems evolve for LHC, the need for rigor in software engineering increases in importance. In addi-
tion, as the development of these complex systems is increasingly carried out remotely from CERN or by developers
on short-term contracts at CERN, the need for clearly defined deliverable code and interfaces between (sub-)systems
also becomes crucial. As a consequence, software engineering standards have been investigated in the last few years
by large groups of developers in HEP. Furthermore, work at the European Southern Observatory [13] into standards
has recommended the use of the European Space Agency software engineering standards alongside those from the
IEEE and IEE.

LHC experiments will involve collaborations of many tens of institutes and over 1,000 physicists, engineers and
computer scientists from around the world. The knowledge required to construct and monitor the hearts of the exper-
imental detectors will be distributed between these institutes making it difficult to impose standards. There will con-
sequently be significant problems of information transfer in ensuring that each detector subsection retains autonomy
of control but can work with other detector subsections for data-acquisition. In addition, the LHC detectors will be
required to have a long lifecycle, since the experiments will take data for several years and as a consequence main-
tainability will be an important consideration. Clearly, to reduce problems of interoperability and integration the
project needs to adopt a set of standards both for the development of the CICERO software and its operation across
heterogeneous hardware platforms [5]. The methods used and the standards followed must enable collaborative
working in a systematic manner and adherence to a strict discipline. Support tools are  required to provide cross-
checks of the design and to reduce the possibility of error in the construction of design models.

 

3  The Choice of Methods and Standards in CICERO

 

The European Space Agency Procedures, Specifications and Standards [14] method has been atapted as an essential
feature of CICERO. This standard has been developed for the European Space Agency to ensure that any project has
the best chance of being successful. There are two major parts: the product standards themselves and the procedures
standards used to produce them. The products are the documents and software used to create, use and maintain soft-
ware. The procedures guide the system developer in software project management, software configuration manage-
ment, software verification and validation and software quality assurance.The documentation for this standard
includes both mandatory and optional sections, divided into three levels. In order to meet the ESA standard, all man-
datory operations must be carried out or documentation produced as appropriate. The process of production is divided
into six phases, following the standard life-cycle model of User Requirements Definition, Software Requirements
Definition, Architectural Design, Detailed Design and Production, Transfer and Operations & Maintenance. In addi-
tion there are documents on Structured Analysis, Fortran Coding, Ada Coding & C Coding standards. 

Management of the software lifecycle is catered for in the ESA standards through the use of a Software Configuration
Management Plan (SCMP), a Software Verification and Validation Plan (SVVP) and through Software Quality Assur-
ance (SQA). These plans are detailed in [14] and provide the project manager with requirements for identifying, con-
trolling, releasing and changing software releases and for recording their status. The SVVP provides for the review,
testing and auditing of the delivered software products. Further, the project manager can ensure quality is being main-



 

tained in software delivery by following the recommendation of the SQA plan.

The ESA standards were originally based on the ‘Waterfall Model’ of the software lifecycle, following a phased
approach to software development. Modified forms of this approach include the incremental delivery and evolution-
ary development models. In the development of Cortex an 

 

evolutionary

 

 approach has been adopted which overcomes
some of the limitations of the waterfall model (eg implementation only in full and at project completion). The evolu-
tionary approach allows for the planned delivery of multiple releases of Cortex, with each release incorporating the
experience of earlier releases in a manner analogous to the ‘Spiral Model’ of software development suggested by
Boehm [15]. Given the often speculative nature of the research in CICERO and the mechanisms of staged funding,
following the evolutionary approach to systems development reduces the inherent risk of project failure.

The ESA standards do not prescribe a method to follow in designing software systems, although they promote a func-
tional decomposition approach to systems design. However, the nature of HEP control systems - their complexity, the
distribution of components across heterogeneous systems and the set of fundamental system services required in
these systems (such as replication, migration and failure and error recovery) point to the use of an object encapsula-
tion approach as an appropriate mechanism of hiding and managing system complexity. Such objects can improve
inter-operability due to their semantic richness and can be combined in novel ways to promote information process-
ing and minimise code modification. Furthermore, adopting an Object Oriented approach in design facilitates the
encapsulation of existing non-object based (legacy) systems so providing software reuse and a clear upgrade path for
control systems designers. Consequently, an Object Oriented approach has been adopted in CICERO.

In the development of CICERO, Object Oriented programming languages (eg C++), Object Oriented Databases (eg
Gemstone, O2) and object-based distributed systems standards (CORBA [1]) are being investigated. In integrating
such technologies, an object oriented design approached is required to be followed which is sufficiently mature, aca-
demically sound and supported by available Computer Aided Software Engineering (CASE) tools. Foremost amongst
these is the method developed by James Rumbaugh and colleagues, OMT [16]. The OMT method comprises a num-
ber of models which are developed and enhanced as the project moves from requirements analysis through design to
implementation. OMT comprises three models and four software development stages: the Object, Dynamic and
Functional Models and the phases of Analysis, System Design, Object Design and Implementation.

Of widest use on the CICERO project have been the Object/Class model of OMT(a form of Extended Entity Rela-
tionship model showing static data relationships in the software), event traces (showing sequences of messages sent
between objects to accomplish a given function) and the Dynamic Model (State Charts to define the temporal order-
ing of events impinging on a given object). The Functional Model which encompasses data-flow diagrams and func-
tion definitions has not been used much in CICERO. The Object and Dynamic models have been supported by the use
of a diagramming tool, Select initially, and latterly Westmount Case. In addition, the CICERO project has used a code
generation tool, OBLOG, which supports the OMT methodology, to generate User Components (in C++) from the
OMT Object/Class model. The OBLOG tool integrates concepts from semantic data modelling and concurrent pro-
cessing, employing objects as a unifying concept and aims at a conceptually seamless methodology from require-
ments to implementation [17].

 

4  A Critique of the Use of OMT and the ESA Standards

 

The software quality assurance process of ESA enforces the classic waterfall model of software engineering by
requiring that no phase can begin until the previous one is complete. While Object Oriented Design is referred to in
the Guide to the Software Architectural Design Phase [14] and Object Oriented Programming is mentioned in the
Guide to the Software Detailed Design and Production Phase [14], the specified method for architectural design is
largely a top down approach. Therefore in using OMT with the ESA standards some mapping from the four software
development phases of OMT onto the six phases of the ESA standards is required.

CICERO has mapped OMT on to ESA in the following manner: The User Requirements phase of ESA is mapped
onto a text-based definition of the problem statement in OMT. The Software Requirements then maps directly onto
the Analysis phase in OMT where an understanding of the application domain is achieved and a model of the system
is developed. The OMT phase of System Design then matches that of Architectural Design in ESA when the overall
architecture of the system to be developed is determined. Next, the Object Design phase of OMT is mapped onto the
Detailed Design and Production phase of ESA when the models are consolidated and the final system design is spec-
ified in detail. The Implementation phase of OMT corresponds to the Transfer and Operations and Maintenance
phases of ESA (see figure 1).  

Following the ESA standards and an evolutionary lifecycle model, the Cortex element of CICERO has gone through
the first spiral of User and Software Requirements specification followed by Architectural and Detailed Design result-
ing in a demonstrable prototype. The disciplined use of the ESA methods during the prototype development undoubt-
edly helped to clarify the design of the prototype system and to focus the effort of the designers who were
geographically remote (in the UK, Belgium, India, Hungary and CERN). Such a use of the ESA standards does, how-
ever, require care, especially in identifying the boundaries between the different phases of the lifecycle. In principle,
ESA standards do not enforce any particular methodology. In practice, however, the ESA guidelines clearly support a
functional breakdown of the problem statement and hence imply non-object-oriented methodologies. Some trade-offs
had to be made to support the OMT methodology, especially in the Architectural and Detailed Design phases of the



 

ESA standards. One example is in resolving the relationship between the demands on the documentation produced in
accordance with the ESA standards, particularly in the prominence given to natural language in the User and Soft-
ware Requirements documents, and the need for more precise semantics demanded by the OMT modelling approach. 

Software produced for any pilot project must be similar to production software with respect to robustness and reli-
ability. Therefore management guidelines supporting the software lifecycle as enhanced by the ESA-PSS 05 standard
should be strictly followed. In particular, as stated earlier, a complete set of Software Project Management, Software
Configuration Management, Software Verification and Validation and Software Quality Assurance plans should be
produced in parallel with the software lifecycle documents. This is often overlooked in the non-software engineering
world of HEP and in particular when costs are a major constraining factor. It is the experience of CICERO that these
important software management procedures should be addressed in any application of the ESA standards.

The OMT notation itself is strong in describing the abstract models used in object design, but is lacking when
describing the fully implemented system. This failing was particularly noticeable during the Architectural and
Detailed Design phases of the prototype. Yet it is here, when the volume of design information increases substan-
tially, that notations to capture the design and tools for their manipulation are essential. Work on design notations and
the capture and re-use of designs is the focus of some researchers in the OO field and the results of this work should
be consulted by groups using the ESA standards with object-oriented design techniques. OMT is not particularly tar-
geted at the design of real-time systems and is not sufficient to handle concurrency. As a result, the treatment of some
issues of concern in the development of Cortex have been inadequately addressed by OMT. Some of these issues are
better handled by later developments of the OMT approach, notably the Syntropy method [18]. Syntropy provides
additional rigour to the OMT method, particularly in the design of cooperating processes. This is a potential area of
future research in CICERO.

It was clear during the prototype development phase that in normal discussion about Cortex, designers and users
make great use of concrete examples of usage of the system and specific, often important, examples of message
sequencing within the implemented system. It is felt that the efficiency of the design process and of communication
of the design to the users could be improved by the incorporation of scenarios and use cases into the formal documen-
tation and design process following the Jacobson approach [19]. The most appropriate phase for incorporation of
such use cases is clearly the User Requirements specification of ESA. However, these familiar scenarios are likely to
become part of the vocabulary of the project team and be refered to at subsequent stages of the lifecycle thereby add-
ing clarity to the design discussion.

The quality of tools support for methods remains an issue for CICERO. Platform specific tools, difficult access to
design repositories and the lack of support for multi-user and multi-site development, lead to a loss of efficiency. In
particular, this can generate additional conversion and cross-checking tasks. Methods for managing versions of docu-
ments, supporting relationships between models from different viewpoints on the design and tracking the process of
design decision making are all desirable in the selected toolset. As yet there is no obvious single tool for supporting
the use of OMT in developing control systems. Tool evaluation, selection and guidelines in their use in an integrated
manner remain tasks for the next phase of the CICERO project. The use of CASE tools like OBLOG for the auto-
mated generation of CORBA compliant User Component code will be investigated further, especially to increase the
performance of the generated code, to deal with more complex data types and to support concurrent access etc.

 

5  Conclusions

 

Since being approved in February 1994, the RD-38 project has grown and continues to attract further commercial and
academic research interest. A demonstration prototype has been constructed by the CICERO group to validate the
ideas proposed by the collaboration and to illustrate new concepts. This prototype is a small scale illustration of a dis-
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tributed control system for a real HEP experiment. This prototype is operational and has been used to carry out some
basic performance tests. Preliminary results have been obtained, using different user components and distributor con-
figurations and the quantitative results have been reported elsewhere [7]. 

A clear conclusion to be drawn from the prototyping phase is that standards, while necessary for the structured devel-
opment of a project, especially involving widely dispersed collaborators, can introduce problems unless they are well
integrated with methods and tools. In CICERO their disciplined use has demonstrated that a widely dispersed collab-
oration can work together even under tight time and resource constraints to produce a functioning system. However,
the deliverable-driven approach encouraged by the use of the ESA standards is not entirely compatible with an Object
Oriented approach to design and with the prototypical nature of the CICERO research. The prototype has neverthe-
less been successful in, amongst other things, demonstrating the limits to which the ESA standards and OMT can be
used in CICERO and in investigating automatic code generation of Cortex User Components using the OBLOG
CASE tool. It has successfully followed a mapping between the waterfall model of ESA and the object oriented
design of OMT. Recently the next phase of CICERO has been approved. By mid 1996 the project will build a pilot
project in an existing HEP experiment at CERN (L3). This will enable further investigation of the ESA standards and
OOD techniques (following the evolutionary development approach [20]) and greater use of support tools such as
Select, Westmount and OBLOG CASE tools. In addition, the techniques of Jacobson and Syntropy will provide a
fruitful area of further research as identified in the previous section.

Within a year the CICERO collaboration has demonstrated that it is possible to build an heterogeneous distributed
control application using OOD techniques, commercial products and to deliver high level functionality like alarm fil-
tering, user assistance and on-line documentation to help the user operate the control system. Much work remains in
CICERO Phase II to provide a system which could be used in practice. It is expected that CICERO Phase II will reach
this goal and will prepare the ground for a final consolidation phase yielding a set of software building blocks to
enable the implementation of both LHC experiment control systems and industrial complex control systems.
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