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High Intensity Proton Accumulators
(R. Macek,7/3/01, Snowmass)

� Introduction
� Beam losses and their mitigation

� Foil scattering
� Excited states of H0

� Collimation
� Foil technology issues
� Transverse space charge effects
� 2-stream e-p instability
� Inductive inserts
� Conclusions
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Introduction to DC Accumulator Rings (PSR,SNS,ESS)

� Mission: highly reliable, high-intensity proton driver for short-
pulse spallation neutron source

� Distinguishing characteristics
� ≥ 1000 turns of injection via H- stripping
� Einj = Efinal
� High intensity (0.1- 2 mA throughput)

— (0.3 – 2x1014) single bunch, 0.25-1.0 µs long @ 10 – 60 Hz rep rate

� 3 examples
� PSR (LANL) operating since 1986 and providing numerous lessons 

for the next machines
— 3x1013 ppp @ 20 Hz, 0.8 GeV, 80 kW

� SNS under construction
— 1.7x1014 ppp @60 Hz, 1.0 GeV, 2 MW

� ESS conceptual design for 2 rings
— 2.3x1014 ppp @50 Hz, 1.33 GeV, 5 MW
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PSR Lattice functions (1998)
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SNS Ring Layout* 
(courtesy Jie Wei)

*J.Wei, etal, Phys Rev ST-
Accel .Beam 3, 08101 (2000)
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SNS Lattice Functions
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ESS Ring Layout



8/27/2001 RJM_Snowmass2001.ppt8

Uncontrolled beam losses
� Arguably the most challenging problem with these machines

� ~300 nA (0.3%) uncontrolled losses at PSR mostly in 3 sections (~ 25 m)
around injection and extraction

� Up to 50 Rem/h hot spots, 1-5 Rem/h at 30 cm at injection section
� ~60% of uncontrolled loss at PSR from nuclear and large angle 

Coulomb scattering from foil
� Keep beam off the foil as much as possible with optimized injection 

painting
— ~ 50 hits/proton at PSR, 6-7 hits/proton in SNS and ESS designs

� Large acceptance helps contain more of the Coulomb scattering
� Losses from excited states of H0(n) 

� H0(n) field-strip part way into the down stream magnet 
� Yield  ∝ n-3

� 20 - 40% of losses at PSR
� Reduce by using low magnetic field and placing foil in a field

� Losses from space charge emittance growth
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Emittance growth from Transverse Space charge

� Vertical profiles from PSR compared to ORBIT simulations (courtesy 
J. Galambos & J. Holmes 1999)
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SNS Collimator
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Stripper Foils
Used (2 layer, 1997)New (4 layer)
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e-p instability and electron cloud effects
� Strong, fast, transverse instability that limits peak intensity at PSR*

� Growth time ~ 75 µs or ~200 turns

� Now seen at several machines but not ISIS

� Can be roughly understood in centroid model of coupled motion of
electrons and protons (Zotter and Neuffer) 

� Unstable modes (n-Q) close to Qe (ratio of electron bounce frequency to Ω0)
� Threshold condition with Landau damping in rough agreement with 

observation
� For a bunched beam, Neuffer assumed trapping of e’s by beam in the gap

� Source of electrons and electron density in the beam are the main 
remaining unknowns

� Need ~ 1% neutralization to explain observed thresholds
� Program of measurements underway at PSR using retarding field analyzers 

(RFA) and various collections plates

* See R. Macek, etal, PAC 2001, FOAB007
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RFA Electron signals in a straight section
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Summary of main electron cloud observations at PSR

� Characteristics of the electron cloud
� Electrons strike the wall in pulse near the end of the beam pulse with 

energy spectrum that extends beyond 250 eV
� High electron flux everywhere, including inside a dipole and a quadrupole
� Higher flux for unstable beams

� Measured dependence on location, beam intensity, beam pulse shape, 
local beam losses and vacuum pressure

� Electron flux increases with beam intensity, local beam losses and vacuum 
pressure

� Electron cloud observed in the extraction line has same characteristics 
as in the ring

� Tested effect of TiN coating: factor of 100 or more suppression
� Other observations

� Vacuum pressure rise for high intensity pulses (8 µC/pulse)
� Conditioning effect on instability threshold curves
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What do the observations mean for e-p?
� Great deal of data on the characteristics of the cloud and factors 

influencing it but lack a direct measure of what counts the most –
the electron density in the beam

� Trailing edge multipactor mechanism can account for a good 
fraction of the flux striking the walls

� Suppression by TiN
� Single pass electron signal in extraction channel similar to the ring 

signals
� We expect the simulations of Furman and Pivi will be most helpful 

in interpreting the electron cloud data
� Some remaining puzzles

� Instability threshold does not track the strong intensity dependence of 
the electron signal (I6) seen in several locations

� Instability threshold does not track the increase in electron signal from 
increases in vacuum pressure or beam losses

� Have built a new detector (electron sweeper) to measure electrons 
surviving the gap
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“trailing edge” multipactor

Electron born at 
wall from say losses

WC41

E-Detector x 4

Beam

Energy gain in one traversal
is high enough for multiplicationEnergy gain is possible in wall-to-wall 

traversals on trailing part of beam pulse

Bk87,  p111



8/27/2001 RJM_Snowmass2001.ppt17

Electron-sweeping detector

Collector

Repeller Grid

Pulsed Electrode

Slots & Screen
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Signal

� Xerox of log book
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Electrons in pipe vs time after end of beam pulse

� Preliminary results for 
5 µC/pulse looking just after 
extraction

� Long exponential tail seen 
with 170 ns decay time

� Still see electrons after 1 µs
� Implies a high reflectivity for 

low energy electrons
� Implies neutralization lower 

limit of ~1.5% (to be refined)
� We look forward to studying 

the correlations with the 
“multipactor” electron signal 
and beam intensity, etc
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Known or conjectured remedies for e-p

� Clean gap
� rf, inductive inserts
� gap kicker

� Landau damping from higher rf voltage (higher momentum 
spread), inductive inserts, multipoles, and XY coupling 

� Suppress electron generation 
� TiN coatings, solenoid windings 
� good vacuum, low losses 
� collect electrons from the foil

� Wide-band active damping
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Use of Inductive Inserts for compensation of 
longitudinal space charge

� Being considered for the FNAL proton driver project
� Idea is to add ferrite to increase wall inductance to cancel 

longitudinal space charge voltage per turn

� At PSR the motivation was to help control the e-p instability by 
preventing beam from leaking into the gap and increasing the 
momentum spread (more Landau damping)

� Ferrite inserts were effective at PSR after a longitudinal “instability” 
(resonance) was cured by heating the ferrite

� Cleaner gap
� Increased e-p instability threshold by ~30%
� Allows operation with 15-20% longer bunch
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ACCSIM simulations with longitudinal space charge at PSR

No longitudinal space charge compensation (7.3 µC)

Space charge completely canceled (7.3 µC)

Spickermann 2/10/00
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Longitudinal resonance with room temperature ferrites installed
Wall Current Monitor for two turns of coasting beam (RF off)

RF off, Injected PW = 250 ns, accumulate 125 µs, 500 µs store, Inductor Bias=0, 3 modules installed

See longitudinal modulation at 72.7 MHz, close to the estimated
beam-driven, ferrite-loaded cavity resonance (TM010 mode).

Bk86,  p123
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Effect of Heating the Inductor Ferrite

� Ferrite Inductor (2 modules) at 
room temperature

� 3.3 µC accumulated

� Ferrite at 130º C
� 3.3 µC accumulated
� Longitudinal signal at cavity 

resonance down 30db from 
room temperature case

Wall
Current
Monitor

Bk92,  p10Bk91,  p150
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Final version of 2-module inductor installed in PSR
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Layout of inductor heating elements



8/27/2001 RJM_Snowmass2001.ppt27

Summary of R&D needs

� Numerous technology challenges
� Improved foils

— Longer life, retain shape
— Diamond foils may have merit

� Diagnostics
� Experimental verification of collimator designs

� Electron cloud effect and e-p instability
� Detailed simulations of the electron cloud generation
� Improved theory for bunched beams 
� Direct measure of electron density in the beam at PSR
� Measure the impedance of the electron cloud

� Longer Term: laser-aided injection to eliminate stripping foils
� Many technical challenges 
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