High Intensity Proton Accumulators
(R. Macek,7/3/01, Shnowmass)

0 Introduction

. Beam losses and their mitigation
0 Foil scattering
0 Excited states of H°
0 Collimation

Foil technology issues
Transverse space charge effects
2-stream e-p instability
Inductive inserts

Conclusions
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Introduction to DC Accumulator Rings (PSR,SNS,ESS)

1 Mission: highly reliable, high-intensity proton driver for short-
pulse spallation neutron source

0 Distinguishing characteristics
0 > 1000 turns of injection via H- stripping
0 Einj = Efinal
0 High intensity (0.1- 2 mA throughput)
— (0.3 — 2x10"4) single bunch, 0.25-1.0 us long @ 10 — 60 Hz rep rate

0 3 examples

0 PSR (LANL) operating since 1986 and providing numerous lessons
for the next machines

—3x10"3 ppp @ 20 Hz, 0.8 GeV, 80 kW

0 SNS under construction
— 1.7x10"* ppp @60 Hz, 1.0 GeV, 2 MW

0 ESS conceptual design for 2 rings
— 2.3x10"* ppp @50 Hz, 1.33 GeV, 5 MW
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Circumference = 90m

Beam energy = 798 MeV

Revolution frequency =2.8 MHz

Bunch length ~ 250 ns (~63 m)

Accumulation time ~ 750 ms
~2000 turns
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PSR Lattice functions (1998)
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SNS Ring Layout*
(courtesy Jie Wei)
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SNS Lattice Functions

Working poinl [5.406.30)
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ESS Ring Layout
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Uncontrolled beam losses

Arguably the most challenging problem with these machines

0 ~300 nA (0.3%) uncontrolled losses at PSR mostly in 3 sections (~ 25 m)
around injection and extraction

0 Up to 50 Rem/h hot spots, 1-5 Rem/h at 30 cm at injection section

~60% of uncontrolled loss at PSR from nuclear and large angle
Coulomb scattering from foil

0 Keep beam off the foil as much as possible with optimized injection
painting
— ~ 50 hits/proton at PSR, 6-7 hits/proton in SNS and ESS designs
0 Large acceptance helps contain more of the Coulomb scattering
Losses from excited states of Ho(n)
0 HO(n) field-strip part way into the down stream magnet
0 Yield < n-3
0 20 - 40% of losses at PSR
0 Reduce by using low magnetic field and placing foil in a field

Losses from space charge emittance growth
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Emittance growth from Transverse Space charge

0 Vertical profiles from PSR compared to ORBIT simulations (courtesy

J. Galambos & J. Holmes 1999)
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SNS Collimator
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Stripper Foils

New (4 layer) Used (2 layer, 1997)
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e-p instability and electron cloud effects

0 Strong, fast, transverse instability that limits peak intensity at PSR*
0 Growth time ~ 75 us or ~200 turns

1 Now seen at several machines but not ISIS

1 Can be roughly understood in centroid model of coupled motion of
electrons and protons (Zotter and Neuffer)

0 Unstable modes (n-Q) close to Q. (ratio of electron bounce frequency to Q)

0 Threshold condition with Landau damping in rough agreement with
observation

0 For a bunched beam, Neuffer assumed trapping of e’s by beam in the gap

0 Source of electrons and electron density in the beam are the main
remaining unknowns

0 Need ~ 1% neutralization to explain observed thresholds

0 Program of measurements underway at PSR using retarding field analyzers
(RFA) and various collections plates

* See R. Macek, etal, PAC 2001, FOAB0O0O7
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RFA Electron signals in a straight section
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Summary of main electron cloud observations at PSR

N

Characteristics of the electron cloud

0 Electrons strike the wall in pulse near the end of the beam pulse with
energy spectrum that extends beyond 250 eV

0 High electron flux everywhere, including inside a dipole and a quadrupole
0 Higher flux for unstable beams

Measured dependence on location, beam intensity, beam pulse shape,
local beam losses and vacuum pressure

0 Electron flux increases with beam intensity, local beam losses and vacuum
pressure

Electron cloud observed in the extraction line has same characteristics
as in the ring

Tested effect of TiN coating: factor of 100 or more suppression
Other observations

0 Vacuum pressure rise for high intensity pulses (8 uC/pulse)
0 Conditioning effect on instability threshold curves
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What do the observations mean for e-p?

Great deal of data on the characteristics of the cloud and factors
influencing it but lack a direct measure of what counts the most —
the electron density in the beam

Trailing edge multipactor mechanism can account for a good
fraction of the flux striking the walls
0 Suppression by TiN

0 Single pass electron signal in extraction channel similar to the ring
signals

We expect the simulations of Furman and Pivi will be most helpful
in interpreting the electron cloud data
Some remaining puzzles

0 Instability threshold does not track the strong intensity dependence of
the electron signal (I°) seen in several locations

0 Instability threshold does not track the increase in electron signal from
increases in vacuum pressure or beam losses

Have built a new detector (electron sweeper) to measure electrons
surviving the gap
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“trailing edge” multipactor

Electron born at
PR == wall from say losses

Beam
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Energy gain is possible in wall-to-wall 's high enough for multiplication

traversals on trailing part of beam pulse
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Electron-sweeping detector
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Signal

0 Xerox of log book
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Electrons in pipe vs time after end of beam pulse

Preliminary results for
5 uC/pulse looking just after
extraction

Long exponential tail seen
with 170 ns decay time

Still see electrons after 1 us

Implies a high reflectivity for
low energy electrons

Implies neutralization lower
limit of ~1.5% (to be refined)

We look forward to studying
the correlations with the
“multipactor” electron signal
and beam intensity, etc
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Known or conjectured remedies for e-p

Clean gap
O rf, inductive inserts
0 gap kicker

Landau damping from higher rf voltage (higher momentum
spread), inductive inserts, multipoles, and XY coupling

Suppress electron generation
0 TiN coatings, solenoid windings
0 good vacuum, low losses
0 collect electrons from the foil

Wide-band active damping
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Use of Inductive Inserts for compensation of
longitudinal space charge

o Being considered for the FNAL proton driver project

1 ldea is to add ferrite to increase wall inductance to cancel
longitudinal space charge voltage per turn

V _ 87\.(3) gOZO _
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0 At PSR the motivation was to help control the e-p instability by

preventing beam from leaking into the gap and increasing the
momentum spread (more Landau damping)

0 Ferrite inserts were effective at PSR after a longitudinal “instability”
(resonance) was cured by heating the ferrite

0 Cleaner gap
0 Increased e-p instability threshold by ~30%
0 Allows operation with 15-20% longer bunch

QOL}GBCR
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ACCSIM simulations with longitudinal space charge at PSR

No longitudinal space charge compensation (7.3 uC)
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Longitudinal resonance with room temperature ferrites installed

Wall Current Monitor for two turns of coasting beam (RF off)

RF off, Injected PW = 250 ns, accumulate 125 us, 500 us store, Inductor Bias=0, 3 modules installed
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See longitudinal modulation at 72.7 MHz, close to the estimated
beam-driven, ferrite-loaded cavity resonance (TM,,, mode).
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Effect of Heating the Inductor Ferrite

0 Ferrite Inductor (2 modules) at 0 Ferrite at 130°C
room temperature

0 3.3 uC accumulated

0 3.3 uC accumulated

0 Longitudinal signal at cavity
resonance down 30db from
room temperature case
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Final version of 2-module inductor installed in PSR
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Layout of inductor heating elements
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Summary of R&D needs

0 Numerous technology challenges

0 Improved foils
— Longer life, retain shape
— Diamond foils may have merit

0 Diagnostics
0 Experimental verification of collimator designs

0 Electron cloud effect and e-p instability
0 Detailed simulations of the electron cloud generation
0 Improved theory for bunched beams
0 Direct measure of electron density in the beam at PSR
0 Measure the impedance of the electron cloud

0 Longer Term: laser-aided injection to eliminate stripping foils
0 Many technical challenges
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