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[ INTRODUCTION ]

● Activation of environment due to beam loss → Big Problem

Halo causes beam loss.
→ Important to understand mechanisms of halo formation.

● Halo formation has been studied by

- simulations such as particle-in-cell (PIC) 
- theoretical analysis such as particle-core-model (PCM).

● Speculation for halo formation mechanism given by existing analyses 

→ Parametric resonance excited between
betatron oscillation and oscillating space charge force.
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● Existing analyses can not be applied to halo formation under non-
equilibrium state because

1. rms emittance grows up  → ×PCM analysis

2. non-equilibrium state finishes generally less than a few tens turns
������������→ × Poincaré map analysis (simulation)
������������� × Frequency analysis (simulation)
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A novel analytic technique is 
important, which can be applied to 
halo formation under non-equilibrium 
state.
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[ PURPOSE ]

For circular accelerators, understand

1.  mechanisms of halo formation
2.  mechanisms for a particle distribution to
achieve an equilibrium

through a non-equilibrium state.

[ MY  WORK ]

A novel analytic technique was developed by using classical nonlinear 
theory : Isolated Resonance Hamiltonian (IRH).
Halo’s location of a 2D Gaussian beam under non-equilibrium state in 

FODO lattice was analyzed by using IRH.
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[ CALCULATION  CONDITION  1 ]

(1)  Typical FODO lattice (KEK 12Gev PS).

(2) 500MeV, ∆ p/p = 0

(3)  bare tune ( νx, νy ) = (7.123, 5.229), (7.203, 5.229)

(4) 2-D (x and y direction) Gaussian beam.

(5)  Time varying of RMS beam size is obtained from the simulation results.
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[ CALCULATION  CONDITION  2 ]
Simulation Analysis

Tracking

1st turn

2nd turn

nth turn   σx (s), σy (s)    ->  ϕ(s)  ->    <H>
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[ DERIVATION of IRH ]

(1) Single particle Hamiltonian for Betatron oscillation

H ψ x ,ψ y , Ix , Iy ;θ( )= ν x Ix + νy Iy +
eR

γ 2pv
ϕ ψ x ,ψ y , Ix , Iy ;θ( )

ψ x ,ψ y , Ix , Iy( ) : Action - angle variable
θ : Dependent variable
ϕ : Space charge potential

(2) ϕ oscillates with θ because of intrinsic beam-core oscillation.
( = mismatching and lattice-structure)

→ ϕ is separated into rapid oscillation term and slow oscillation term.
- Rapid oscillation term can be removed by time average <ϕ>.
- Slow oscillation term is just resonance term
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(3) <H> is called as Isolated Resonance Hamiltonian.

IRH for  ”nonlinear resonance between Betatron oscillation

and oscillating space charge forces of 2D Gaussian beam

if                                   is satisfied“ isi 2δvs.c.,x −κ( )≈ 0

H Ψx , Ix , Iy( )= ν x −
κ
2δ

 
 
  

 
 Ix +

eR
γ 2 pv

ϕ Ψx , Ix , Iy( )
.

ν s.c. :Depressed tune
i, δ : Integer
κ : Oscillating number of rms beam size per 1 turn
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[ JUSTIFICATION of IRH ]

Comparison of phase space map 
between (a) IRH and (b) Simulation.   
(8.5e11[ppb])
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○ What happens under non-
equilibrium state in simulation 
results ?

○ What causes complicated 
particle distribution?

[ Simulation Results (1)  (νx, νy) = (7.123, 5.229) ]
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[ TIME VARYING of IRH  (1) (νx, νy) = (7.123, 5.229) ]

○ Dominant resonance

Mismatching resonance
(initial a few turns)

↓
Structure resonance
(after decay of mismatch)

○ Particles moved to outer
edge of resonance island

�����↓
���Halo formation
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[ Simulation Results  (2)  (νx, νy) = (7.203, 5.229) ]
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[ TIME VARYING of IRH  (2) (νx, νy) = (7.203, 5.229) ]
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↓
VANISH
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○ Father resonance does not
occur

�����↓
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[ Conclusion ]

1.  Nonlinear resonances excited by  intrinsic beam core oscillation at non-
equilibrium state remarkably contribute to halo generation.

2.  Beam distribution achieves an equilibrium state through decay process 
of nonlinear resonances.

3.  It turns out that the present analytic approach technique is quite useful to 
understand 

what happens in simulation results
and

what causes complicated particle distribution.


