: O
- NORTHERN ILLINOIS F
IEE UNIVERSITY K IIIG“‘I'I ’

HALO FORMATION
FROM WEAK SPACE CHARGE
AND COLORED NOISE

Ioannis (Yanni) Sideris
Northern Illinois University
Department of Physics

[1n collaboration with Courtlandt L. Bohn]



WARM-FLUID KV MODEL OF A CYLINDRICAL DC BEAM
S. Lund and R. C. Davidson, Phys. Plasmas 5, 3028 (1998);
S. Strasburg and R. C. Davidson, Phys. Rev. E 61, 5753 (2000).

Ecluation of motion for radial orbits :

& [n* - (1-n*)cosar]x =0 for x<1.0;| |rms- matched
=0 forx=1.0; “n=1"mode

&t x —

X
17 1s the tune depression, [ 1s the ratio of the electrostatic energy in

the collective mode to the electrostatic energy in the equilibrium beam,

and, for the lowest - order collective mode, w= \/ 20+n%).

To include colored noise, we set w — w+dw and R’ - N° + wWdw.

Consequently, noise now appears in both the net focusing and

collective oscillation frequencies.



INVESTIGATIVE STRATEGY

[I. V. Sideris and C. L. Bohn, Phys. Rev. ST Accel. Beams 7, 104202 (2004)]

Populate the oscillating warm-fluid beam with 10° test charges distributed
according to the thermal-equilibrium density profile. Radial orbits have
zero 1nitial velocity. Assign each orbit its own noise. Integrate and track.
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HALO EXTENT vs. OSCILLATION AMPLITUDE
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log,,(% Particles Lying Outside 1)

HALO DENSITY PROFILE
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HALO AMPLITUDE vs. NUMBER OF PARTICLES
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| Regardless of noise strength or mismatch, the halo amplitude scales as log,N.




SMALL SPACE CHARGE ACTING OVER A LONG TIME

Duration of Run: # = 2X%10° units ~3,000 Booster ring transits
1,000 Test Particles per Run, Space-Charge-Depressed Tune /7= 0.95,
Autocorrelation Time 7. = 80 (~8 typical orbital periods)
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WHY WORRY ABOUT BEAM HALQO?

* Proton machines such as spallation-neutron-source drivers:
— Need [11 nA m'! GeV-! beam loss for hands-on maintenance.
— For 1 mA, 1 GeV beam, this is just [ |1 particle in 10° per meter.

 Electron machines such as energy-recovery linacs:

— Need [J1 PHA beam loss for machine and electronics protection.
— For 100 mA beam (high-P FELs), this is just |1 particle in 10°,

Comprehensive understanding of beam-halo formation is imperative!

e Standard Picture: Parametric resonance
— Viewed as the fundamental mechanism of halo formation.
— Predicts hard upper bound to halo amplitude.

Question of the Hour: Is parametric resonance really everything?



SUMMARY AND CONCLUSIONS

* Noise, an unavoidable phenomenon, can have major effects
— expands the phase space
— redistributes particles through phase space
— affects Coulomb systems in general (e.g. galaxies, too!)

 Details do matter (halo being just one example)
— control of rms properties 1s necessary but not sufficient
— simulation codes must accommodate ‘modes’ at all scales
— 1nitial conditions are critical and must be specified accurately

* Collective modes affect dynamics differently from rms mismatch
— phase-space tori are much more fragile
— phase mixing 1s much faster and more voluminous



LONG-TIME EVOLUTION OF LARGE-AMPLITUDE ORBITS
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EXAMPLE MANIFESTATIONS OF COLORED NOISE
ALONG AN ORBIT

(6w(t)) =0, (ow(t)ow(ty)) o< exp(—|t —1t1|/t.),
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ORBITAL CHAOTICITY [[=0.10, x(0)=-0.733407]

Configuration Space
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INFLUENCE OF ANGULAR MOMENTUM (I'=0.05, ¢,=80)
) Orbits

Radial (- ---- ) vs. Imitially Circular (

Blue: ((d0wi) =0
Red: (|0w)=0.001
Black: {|0w)) = 0.01
Green: ((0w)) = 0.1

Angular momemtum has
little impact.

Reason: Large halo orbits
g originate from the interior.
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COLORED NOISE AND PHASE MIXING (I'=0.03, #,.=80)
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COLLECTIVE MODES # RMS MISMATCH!
POINCARE SECTIONS (I'=0.05, t =80, 18 orbits over ~250 7,,)
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(x,v,) PHASE SPACE: 7=0.3,T = 0.1
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TINY OSCILLATION, TINY SPACE CHARGE, LONG RUN
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