2= Fermilab

e Development

<eceni Frogress

FNAL

ostiguy@fnal.gov

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Collaborators ...

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Why ORBIT ?

. We considered a variety of existing codes

- Support for parallel execution (MPI)

Note: (Synergia) - essentially a derivative of IMPACT (developed to study
halo in high intensity linacs) is also under development at FNAL. The focus is
“full 3D" simulation in synchrotrons. Cross checks are useful and important
for validation of both ORBIT and Synergia.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Beam Physics Dept Parallel

Linux Cluster
| 32 2-CPU Nodes (1.4 Ghz AMD Athlon

g~ 100-1000 furns with O(10%) macro particles.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab
Code Development

Recent development efforts at Fermilab have been focused on:

. Correct tune Footprint Computation

. Better support for Acceleration (e.g.
mutipoles, transition etc...)

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab
Machine Description

. Until recently, ORBIT had been relying on MAD
or DIMAD to produce maps and lattice

. The process of importing a machine description
into ORBIT is cumbersome and potentially error
prone (e.g. changes in MAD output file format
between different versions/platforms)

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

A Lex/Yacc based MAD parser

. A Lex/Yacc-based MAD parser was developed in the BP

. Successfully validated on very large lattice files (e.g.
complete Tevatron lattice)

. BTW: The parser is also used by Synergia

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Proceedings of the 2001 Particle Accelerator Conference, Chicago

A LEX-BASED MAD PARSER AND ITS APPLICATIONS

O. Krivosheev', E. McCrory, L. Michelotti, D. Mokhov!, N. Mokhov, I.-F. Ostiguy
. FNAL, Batavia, IL 60510, USA
* University of Illinois at Urbana-Champaign, USA

Abstract

An embeddable and portable Lex-based MAD language
parser has heen developed. The parser consists of a front-
end which reads a MAD fle and keeps beam elements,
beam line data and algebraic expressions in tree-like struc-
tures, and a back-end, which processes the front-end data
to generate an input file or data structures compatible with
user applications. Three working programs are described,
namely, a MAD to C++ converler, a dvnamic C++ ohject
factory and a MAD-MARS beam line builder. Design and
implementation issues are discussed.

1 INTRODUCTION

The MAD[1] lattice description language has become the
lingua franca of computational accelerator physics. In or-
der to achieve acceplance, new codes and libraries need to
recognize lattice descriptions expressed in MAD format.
Curchjective was [2] to produce an embeddable parser able
to read, parse and store lattice descriptions in memory. The
parser had to be flexible enough to support various formats:

MAD variables, and thus beam element definitions, can be
altered at any point. the only sensible way to build a parser
is tomake 1t a two-stage program. The first stage, or front-
end. reads the MAD input file and parses it in memory. The
second stage ar back-end, generates output ina suitable For-
mat, e C++. This design is very Hlexible since the back-
end can be modified to support other formats or to dynam-
ically instantiate data structures (C++ Tactory).

2.2 From-End

The front-end uses a lexical analyzer built with Lex (in
its Flex[3] incarnation). It recognizes MAD kevwords,
identifiers. numbers, strings, and comments from regular-
expression-based rules and returns corresponding tokens
and semantic values. The parser, written in YACC (we are
using the Bison|6] favor ol YACC), contains the gram-
mar for MAD definitions. 1t recognizes those definitions

(- Nl (R L= T

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Mxyzptlk and Beamlin€
(L. Michelotti)

. mxyzptlk is a C++ class library to perform automatic

chromaticities, maps (to order n), map
concatenations etc ...

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Mxyzptlk ?

Superman's foe from the 5™ dimension.
He will return to his own dimension

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Why Use the BEAMLINE Class ?

Written in C++, just like ORBIT
The same code automatically supports 1s',

completely under user control if
desired/necessary (e.g. thin kicks a la

Tpot)
BTW: Synergia uses BEAMLINE to compute map coefficients.
Propagation is handled by IMPACT

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2& Fermilab
o - L. 2
Beamline Class Library

Computational Performance

Initial attempts at using the BEAMLINE library resulted in

. Especially at low orders, it was found necessary to store map
coefficients and invidual monomial exponents explicitely in

linear arrays in order to get satisfactory map evaluation
performance.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab
Propagator

In the beamline library, the Propagator is a functor (i.e. a function

representation can be instantiated by the propagator constructor.
Using this technique, tracking using the facilities provided by the
beamline library has been verified to be as efficient as with existing

code.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

2"d Order Map Code Validation

Simple test: observe the tune spread associated with 2 different momentum

FNAL 2nd Order Maps - Chromaticity test

T
dp/p=4.0e-3 +
dp); =2.0e-3 x

. -9.86H, -6.89V

6.55

6.5
6.8 6.85 6.9 6.95 7

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

ORBIT Code Structure

ORBIT is structured as "modules” controlled by a high

!enomma!or !e!ween aII !!ese Ianguages: sla!nc

functions and variables

BTW: In ORBIT, the shell is an integral part of the
code. Input syntax checks and runtime diagnostics are
generated by the shell.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Why Preserve the
In’rer'pre‘rer/ Modules

interpreter level can be reimplemented into a compiled module without
affecting existing scripts.

The interpreter/module structure promotes well-defined interfaces. This
makes it easy to contribute new functionality without deep knowledge of
the entire code.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Python Shell

Problem: SuperCode is orphaned and poorly documented

A wealth of publicly available high quality python code is
available for reuse

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Python/C++ Interface Code
Generation

www.swig.org

www.riverbankcomputing.co.uk

Implemented as a C++ library (mostly header files). Uses template
metaprogramming techniques to generate interface code; no special program
needed beyond a C++ compiler.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Porting Strategy

syntax.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Boost.python Example 1

#include <iostream>
#include <string>
#include "sc-types.h"
#include "sc-string.h"

. __repr__", atrix<complex<Real> >::prin
.def("clear", &Matrix<complex<Real> >::clear)
.def("resize", &Matrix<complex<Real> >::resize)
.def(python::self + python::self)
.def(python::self - python::self)
.def(python::self * python::self)
.def(python::self A python::self)

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Boost.python Example 2

void wrap bump ()
{

.def readwrite ("xPIdealBump", &Bump::xPIdealBump)

// - "The x prime of the ideal bump at a point in time (mrad)",
.def readwrite("yIdealBump", &Bump::yIdealBump)
// — "The y value of the ideal bump at a point in time (mm)",
.def readwrite ("yPIdealBump", &Bump::yPIdealBump)
// — "The y prime of the ideal bump at a point in time (mrad)";
.def readwrite ("bumpOn", &Bump : :bumpOn)
// — "Switch indicating whether ideal bump is on (==1)";

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

ORBIT vs PyORBIT

myﬁle S myﬁ]epy

C (bin/env python

charge = 1; //charge number orbjt.Partjc1es.ad@SyncPart(mSync, charge, TSync)
e Sl disii, e orbit.Parcicles. adduacroHerd(100)
FNALMapLine(filel, file2); orbit.TransMap.FNALMapLine(filel, file2);

hist2 = hist2 + hist; TR 2R 1

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab

Tune Computation

To efficiently produce a (franverse) tune footprint, ORBIT computes tunes
by accumulating phase advance in normalized (Floquet) coordinates.

otherwise the momentum upstream and downstream of a cavity is
different, leading to erroneous dispersive corrections and erroneous funes.
This was not automatically enforced in ORBIT. The effect is obviously
more noticible the larger dE/E per turn is.

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab
Phase Accumulation

Contour distorted by non-linearities

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab
Acceleration

ORBIT currently provides some support for acceleration.

Saturation effects (energy dependent field defects)
Remanent field effects (constant field defects)
Transition crossing (phase jump, pulsed quadrupoles etc ...)

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

2= Fermilab
Conclusions and Status

ixed: incorrect scaling of longitudinal coordinates.
Fixed: obscure memory management problems in mxyzpltk
Work on improved support for acceleration has just begun

J.-F. Ostiguy - Space Charge Study Meeting - July 17 2003

	ORBIT Code DevelopmentRecent ProgressJean-Francois OstiguyBeam Physics DepartmentFNALostiguy@fnal.gov
	Collaborators …
	Why ORBIT ?
	Beam Physics Dept Parallel Linux Cluster
	Code Development
	Machine Description
	A Lex/Yacc based MAD parser
	Mxyzptlk and Beamline(L. Michelotti)
	Mxyzptlk ?
	Why Use the BEAMLINE Class ?
	Beamline Class Library Computational Performance
	Propagator
	2nd Order Map Code Validation
	ORBIT Code Structure
	Why Preserve the Interpreter/Modules Structure ?
	Python Shell
	Python/C++ Interface Code Generation
	Porting Strategy
	Boost.python Example 1
	Boost.python Example 2
	ORBIT vs PyORBIT
	Tune Computation
	Phase Accumulation
	Acceleration
	Conclusions and Status

