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Tevatron Design Parameters

Tevatron Run IIa
Luminosity [×1031] 8.6
Bunch intensity [×1011] 2.7/0.3
Normalized transverse emittance (p/p̄) [95%, πmm-mrad] 20/15
RMS bunch length at top energy [cm] 37
RMS energy spread at top energy [×10−4] 0.9
β∗ [cm] 35
Beam-beam tune shift/IP [p/p̄] 0.0014/0.01
Number of bunches 36
Total number of parasitics 72



Beam Losses & Emittance Growth in the Tevatron

03/02 10/02 01/03 03/03
Protons/bunch at low-beta 140e9 170e9 180e9 205e9
Anti-protons/bunch at low-beta 7.5e9 22e9 20e9 23e9
P-loss at 150 GeV 23% 14% 16% 10%
Anti-proton-loss at 150 GeV 20% 9% 4% 4%
P-loss on ramp 7% 6% 9% 5%
Anti-proton-loss on ramp 14% 8% 12% 11%
Anti-proton-loss in squeeze 25% 5% 3% 2%
Initial p̄ emitt. growth rate in stores εx/εy [% /hr] - 0/0.8 1/2.4 0.4/1.2
Initial p emitt. growth rate in stores εx/εy [% /hr] - 3.4/2.4 2.4/2.4 2/1.2



Analysis and Simulations of Beam-beam effects

Injection and Collision Energy

• Bunch by bunch orbits, tunes, coupling and chromaticities

• Tune, coupling and chromaticity footprints

• Resonance driving terms [with and w/o beam-beam effects]

• Dynamic aperture of protons and anti-protons

DA of anti-protons vs proton intensity, beam separations

• Lifetime simulations - injection energy so far [LBNL and SLAC]



Observations and Experiments on Beam-beam effects

Injection Energy

• Anti-proton (p̄) lifetime dependence on

helix, p̄ tunes and chromaticities, p̄ emittance, p intensity

• Dynamic aperture of p̄ bunches 1 to 4.

Acceleration

• p̄ loss dependence on

p̄ emittance, p intensity

Collision Energy

• p̄ Bunch by bunch measurements of

closed orbits, tunes and chromaticities

• p̄ lifetime dependence on

tunes, helix size, separations at parasitics nearest to the IPs, p̄ emittances, p intensities

• Initial p̄ emittance growth rate dependence on

tunes, bunch number, p intensities



Dynamic aperture of protons at 150 GeV
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Beam Separations at Injection
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Injection: Helix ca. July 2002
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Beam-beam parameters vs Helix Angle
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The tune shift is negative in the dark region and

vanishes along the border.

For round beams and large separations (d �

1), small amplitude parameters

∆νx(0, 0) ∝
cos 2θ

d2

∆ν ′
x(0, 0) ∝

cos θ(2 cos 2θ − 1)

d3
ηx

∆νmin(0, 0) ∝
sin 2θ

d2

⇒

∆ν = 0 along the diagonal
∆ν ′ = 0 along 30◦ or the vertical axis.
∆νmin = 0 along the horizontal or vertical axis.

For arbitrary aspect ratio ⇒



Small amplitude tune shifts & Tune footprints: Injection
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Only beam-beam

Beam-beam and machine errors

Bunch to bunch tune spread ∆νx ∼ 0.005.

Changes are small at the end of a train: A9-A12



Small amplitude chromaticities and coupling: Injection
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Injection Energy: small amplitude chromaticities
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Injection Energy: small amplitude minimum tune split

Np = 3x1011

∆p/prms = 4x10-4

Beam-beam chromaticity → some bunches more susceptible to synchro-betatron resonances,
instabilities.

Changes are small towards the end of a train.



Seventh Order Beam-beam resonances - 150 GeV
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3νx + 4 νy = 4 resonance from parasitics - pbar bunch 1 at 150
GeV
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Resonance 3νx+4νy=p (3σ) for pbar 1 from IPs at 150 GeV
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Anti-proton lifetimes at Injection: Stores 2420, 2502
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Resonances at Injection
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Anti-protons only - Beam Study
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Anti-proton only study - September 10, 2002

In this study, τ was well anti-correlated with the vertical emittance.

In typical stores, 1 ≤ τ (p̄) ≤ 10 hours.



Anti-protons only - Beam Study

Loss of anti-protons during the ramp was very small ∼ 2%.

In typical stores, anti-proton losses during the ramp are ∼ 10%.



Anti-proton dynamic aperture at 150 GeV

Dynamic aperture

Initial beam profile

Final profile

(x, y)



Anti-proton dynamic aperture at 150 GeV
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Anti-proton Dynamic Aperture at 150 GeV

Data from 10 stores: 2375,... 2426

Average proton intensity = 219x109
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Expected and Measured Intensity Drop: Store 2426
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Intensity drop from emittance reduction: Store 2426

Observed drop
Expected drop from 2D emittance
Expected drop from 3D emittance

• The expected drop in intensity was calculated from the final bunch area (2D and 3D). The
bunches are assumed to completely fill their dynamic aperture. The expected 3D loss and
measured loss agree to within 2%.

• The largest difference in 2D and 3D areas was for bunch 1. This bunch had the greatest reduc-
tion in longitudinal emittance.

• This store occurred before the vertical dampers were restored. Since then, we have not seen
this significant emittance shaving at injection.



Anti-proton lifetime at 150 GeV vs Vert. Emittance

A1-A4: εV = 32π, τ = (0.9 - 2.4)hrs

A13-A16: εV = 12π, τ = 4 hrs

A25-A28: εV = 18π, τ = 3.2hrs



Anti-proton lifetime vs Vert. Emittance at 150 GeV
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Lifetime Simulations at 150 GeV
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chromx = 2 (const.)

Lifetime from N = N0 exp[-t/τ]

chromy = 8

chromy = 6

chromy = 4

chromy = 2

chromy = 0

This predicts a qualitative increase in lifetime when the
vertical chromaticity is dropped below 4 units.

Parallel codes have been developed
that run at NERSC

• A. Kabel(SLAC): Code PlibB

Fast evaluation of complex error
function

• J.Qiang(LBNL): Code Beambeam3D

Uses a shifted Green’s function ap-
proach

Both codes include the long-range inter-
actions and transverse noise.

At small apertures, both predict lifetimes
close to the observed lifetimes.



Anti-proton lifetime at Injection - Several Stores

9

Dependence of anti-proton lifetime on proton intensities is low so far.



Anti-proton ramp efficiency in stores



Beam Separations at 980 GeV
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Small amplitude tune shifts & Tune footprints: Collision
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Small amplitude chromaticities and coupling: Collision
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Pbar Closed Orbit Shifts at Sync Light Monitor (980 GeV)
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Parameters: Np = 210 × 109, εp = 20π, σp(p) = 1.4 × 10−4

Lattice functions with all known multipole errors and a1 error in dipoles.



Pbar Closed Orbit Shifts at B0 and D0 (980 GeV)
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Resonances at Collision
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Anti-proton emittance growth at Collision

Start of Store 2441. Start of Store 2445: ∆νy =- 0.001.



Anti-proton emittance growth at Collision
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Vertical emittance growth rate (1st hour in store):  Stores 2441 and 2445

2441
2445

Vertical emittance growth rates in the two stores.



Status of Beam-beam effects

• Injection

– Limit anti-proton lifetimes to under 10 hrs

– No significant influence on protons

• Ramp

– Cause about 10% anti-proton losses

Anti-proton emittance growth during the ramp may be beam-beam related.

– Not much influence on protons

• Squeeze

– Anti-proton losses are low

– Proton losses are occasionally vey high - causing quenches.

• Collision

– Anti-proton and proton lifetimes not much affected by beam-beam at present intensities in
good stores.

– Occasionally have large emittance growth of anti-protons at start of store.

– Proton losses (thought to beam-beam related) can sometimes be higher than acceptable



Improvements

• Increasing the beam separations at all stages.

• Improving the alignment in the Tevatron.

• Smaller beam emittances.

• Operating with lower chromaticities (together with octupoles).

• Improved IR optics, e.g. local decoupling.

• Different bunch patterns.

• Active compensation of beam-beam effects



Backup Slides



• Resonance strengths with 18 bunches were
calculated assuming a reasonable maximum
proton bunch intensity 3.5×1011 that could
be injected into the Tevatron.

• Beam-beam driven 7th order resonances are
the dominant ones at 150 GeV.

• The four largest 7th order resonance driving
terms with 18 bunches are 2-4 times smaller
than with the 36 bunch configuration for pbar
bunch 1.

The resonance strengths are also similarly smaller
for the other pbar bunches.

• Resonance strengths scale linearly with pro-
ton intensity.

⇒ Resonance strength (Np = 2.7 × 1011) =
0.77× Resonance strength (Np = 3.5×1011).

if all other parameters stay constant.

7th Order Resonances with 36 or 18 bunches
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with 18 proton bunches compared with 36 proton
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Small amplitude pbar tune shifts: 18 vs 36 bunches (150 GeV)
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Pbar Tune Shifts at 150 GeV: Different Bunch configurations
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Pbar Tune Shifts at 150 GeV: Different Bunch configurations

36 bunches: Np = 2.7x1011

18 bunches: Np = 3.5x1011

36 bunches
18 bunches

Bunch by bunch horizontal (left) and vertical (right) tune shifts for the two configurations.



Small amplitude pbar coupling and chromaticity: 18 vs 36
bunches (150 GeV)
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Pbar Coupling at 150 GeV: Different Bunch configurations

36 bunches: Np = 2.7x1011
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Pbar Chromaticities at 150 GeV: Different Bunch configurations
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Helix Size at Collision

• August 14, 2002: Vertical separations in the short arc increased from 8-15% at the end of Store
1661.

• August 17, 2002: Repeat of August 14th settings and horizontal separations in the short arc
increased by 15% at the end of Store 1667.

• September 18, 2002: Increased horizontal separations in the short arc by 8% at the end of Store
1764.

• September 23, 2002: Increased horizontal separations in the short arc by 8% at the start of
Store 1781.

• March 21, 2003: Varied horizontal and vertical separations in the entire arc at the end of Store
2328.





Store 1661 (EOS): Vertical changes to the short arc helix
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Store 1661 (EOS): Lifetime vs Vertical Separation in the Short Arc
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Store 1667 (EOS): Vertical & horizontal changes to the short arc
helix
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Store 1764 (EOS): Horizontal changes to the short arc helix
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Store 1781 (Start of Store): Horizontal changes to the short arc
helix
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Losses vs Helix Size

Figure 1: Losses (at end of store) vs helix size.

Losses were observed at the end of a
store by changing the helix size in both
planes. Increasing the helix size to 10%

τ (p) = 86hrs → 68hrs

τ (p̄) = 43hrs → 33hrs

Decreasing the helix size to 80% of
original

τ (p) → 141hrs

τ (p̄) → 67hrs

• Emittances did not change much at
the end ⇒ tails were lost

• Tunes decreased < 0.002 down to
65% of original helix.

Sharp losses at the end were likely
due to (7th, 12th) order resonances.



Helix Size At Injection

• Proton DA vs helix size

• Anti-proton lifetime vs helix size



Proton Dynamic Aperture vs Helix Size (150 GeV)
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100,000 turns

∆p/p = 1.3E-4 = 3 σp

• Parameters: ε = 20π, ∆p/p = 1.3 × 10−3 '

3σp.

• Dynamic aperture calculated after 100,000
turns. The dynamic aperture of protons in-
creases by nearly 1σ when the helix is re-
duced from 100% to 80%.

• The chaotic border (estimator of long-term
stability) is estimated to be 4.7σ for the 80%
helix and 3.9σ for the 100% helix.

• This calculation suggests that reducing the
helix to 80% would have an observable ben-
eficial impact on the proton lifetime at injec-
tion.



Anti-proton lifetime simulation vs Helix Size (150 GeV)
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’SepRes22fit’ u 1:4

• Simulation by J. Qiang (LBNL) using his code
BeamBeam3D with 106 particles followed for
105 turns (2 seconds in the Tevatron).

• Random noise is included to simulate beam-
gas scattering.

• The only nonlinearities are the long-range beam-
beam interactions. No machine nonlineari-
ties.

• Proton parameters: Np = 2.2×1011, ε = 25π,
∆p/p = 7 × 10−4. Machine chromaticities:
Q′

x = 2, Q′
y = 8.

• The physical aperture is fixed at 3.25σ.

• This simulation shows that decreasing the aper-
ture from 100% to 80% of its present value
would reduce the anti-proton lifetime by more
than a factor of two.


