
rwlock(3) Controls products: VxWorks libraries rwlock(3)

NAME
rwlock − readers writer locks, rwcreate, rwdelete, rdlock, wrlock, rdunlock, wrunlock

SYNOPSIS
#include <rwlock.h>

rwlock_t *rwcreate(int flags);

STATUS rwdelete(rwlock_t *rwp);

STATUS rdlock(rwlock_t *rwp, int timeout);

STATUS wrlock(rwlock_t *rwp, int timeout);

STATUS rdunlock(rwlock_t *rwp);

STATUS wrunlock(rwlock_t *rwp);

DESCRIPTION
Readers writer locks are used for synchronization of critical sections of code. They are frequently used in
scenarios where a data structure is frequently search but only occasionally modified. Readers writer locks,
as the name implies, allow many concurrent readers or a single writer access to critical sections.

To create a rwlock (readers writer lock) use rwcreate(). rwcreate() allocates memory from the default
system memory partition for the rwlock_t and returns a pointer to it. The value of flags can be the bitwise
OR of the following values.

RW_WRQ_FIFO:
This is the default if neither RW_WRQ_FIFO nor RW_WRQ_PRIO is set in flags. The default
behavior ensures that writers will not starve. When RW_WRQ_FIFO is set then tasks that block
while taking a write lock are queued in first in first out order.

RW_WRQ_PRIO:
When RW_WRQ_PRIO is set then tasks that come off of the waiting writers queue do so in pri-
ority order. This allows for the highest priority waiting writer to run prior to lower priority writers
that are also waiting. Writer starvation is possible when RW_WRQ_PRIO is set in the flags
argument.

After rwcreate() returns the readers writer lock is ready to be used. Do not call rwcreate() multiple times
for the same rwlock. Be sure to initialize any lock before using it with a call to rwcreate(). Make sure that
no task calls any of the other readers writer lock functions until the lock has been successfully initialized.

To destroy a readers writer lock use rwdelete(). The rwdelete() function frees the memory allocated for
the rwlock by rwcreate(). Make sure that no other task calls any of the other readers writers lock functions
while the lock is being destroyed. Make sure that no task calls any of the readers writers lock functions on
rwp after the lock has been destroyed.

To acquire a read lock to the rwlock pointed to by rwp, use rdlock(). If the rwlock is currently locked for
writing by any other task or there are tasks waiting to acquire a write lock, the read lock will not be granted
at that time. In such a case, the task will either block or return immediately with an error depending upon
the value of timeout specified. Otherwise, the task will be granted a read lock. At any moment numerous
tasks may hold a read lock to any rwlock. At no time will a task hold a read lock to a rwlock while
another task holds a write lock to the rwlock. It is an error for a task to call rdlock() on a rwlock that it
currently holds a read or write lock on.

To acquire a write lock to the rwlock pointed to by rwp, use wrlock(). If the rwlock is currently locked for
writing by any other task or there is at least one task holding a read lock to the rwlock, the write lock will
not be granted at that time. In such a case, the task will either block or return immediately with an error
depending upon the value of timeout specified. Otherwise, the task will be granted a write lock. At any
moment only one task at a time may hold a write lock to the rwlock. At no time will a task hold a write
lock to a rwlock while any other task holds a read lock to the rwlock. It is an error for a task to call
wrlock() on a rwlock that it currently holds a read or write lock on. If the write lock cannot be acquired
immediately and the task blocks, the order in which tasks are awakened when the write lock becomes

Fermilab MAY 2003 1



rwlock(3) Controls products: VxWorks libraries rwlock(3)

available depends on the whether RW_WRQ_FIFO or RW_WRQ_PRIO was specified in flags when the
rwlock was created.

A timeout can be used with rdlock() and wrlock(). If the lock cannot be acquired within the requested
timeout the function will return and indicate the appropriate error. The timeout is specified in units of sys-
tem clock ticks. Use sysClkRateGet() to avoid making assumptions about the clock rate. For example,
setting the timeout to sysClkRateGet() will have the task block for a maximum of one second waiting to
acquire the lock. A timeout value of WAIT_FOREVER can be used to have the calling task block indefi-
nitely until the lock becomes available. A timeout of NO_WAIT can be used to have the function never
block and return immediately with an error if the lock cannot be immediately acquired.

To release a read lock to a rwlock acquired from a call to rdlock() call rdunlock(). It is an error to call
rdunlock() if the calling task does not currently hold a read lock to the rwlock. In particular it is an error
to call rdunlock() if the rwlock is currently write locked by the calling task or is not read locked by the
calling task, even if another task holds a read lock to the rwlock.

To release a write lock to a rwlock acquired from a call to wrlock() call wrunlock(). It is an error to call
wrunlock() if the calling task does not currently hold a write lock to the rwlock. In particular it is an error
to call wrunlock() if the rwlock is currently read locked by the calling task or is not write locked by the
calling task, even if another task holds a write lock to the rwlock.

USAGE
You need to load the readers writer lock library into a VxWorks node before using any of the rwlock func-
tions documented here. The library can be loaded from your target specific module directory on
fecode−bd. An example target is PPC604. You can load either a specific version by specifying a version
number or the most recent version by omitting a version number. For example to load version 1.0 of the
readers writer lock library on a PPC604 node:

ld < vxworks_boot/module/PPC604/rwlock-1.0.out

RETURN VALUES
If rwcreate() is successful it returns a pointer to an initialized readers writer lock. Otherwise it returns
NULL.

For all the other functions in the rwlock library OK is returned to indicate success and ERROR for failure.
When a function fails, errno is set to an appropriate error code.

ERRORS
When an error occurs errno is set to indicate the error. These error codes are defined in objLib.h.

S_objLib_OBJ_TIMEOUT
A call to rdlock() or wrlock() with a timeout other than WAIT_FOREVER or NO_WAIT timed-
out.

S_objLib_OBJ_ID_ERROR
The readers writer lock contains an invalid semaphore possibly because the rwlock has been
destroyed.

S_objLib_OBJ_UNAV AILABLE
A call to rdlock() or wrlock() with a timeout of NO_WAIT was made and the lock was not
immediately available.

S_intLib_NOT_ISR_CALLABLE
The readers writer lock functions cannot be called from interrupt context.

NOTES
This readers writer lock implementation is intended to be fair for both readers and writers. It can guarantee
that no readers or writers starve meaning that once a task has tried to acquire a read or write lock it will
ev entually succeed in the lock operation or timeout.

Synchronization is fundamentally at odds with priority, a lower priority task can prevent a higher priority
task from running by locking out access to a critical section. The nature of readers writer locks is to have
numerous concurrent readers or a single writer at any one time. These properties can be used to the

Fermilab MAY 2003 2



rwlock(3) Controls products: VxWorks libraries rwlock(3)

advantage of a real time system. On the other hand, used carelessly readers writer locks can exacerbate the
problems inherent between synchronization and priority. The property that many readers are allowed con-
currently can be a very valuable tool. High priority tasks can run query types of operations concurrently
with other lower priority tasks also running queries. At the other extreme, the same property can be deadly
if a high priority writer needs to run but there are many lower priority readers that currently have the critical
section read locked.

As with all other synchronization protocols, priority inversion is a factor. The classic example of this with a
readers writer lock is when a low priority task holds a read lock to a rwlock and a high priority task tries to
acquire a write lock to the same rwlock. The high priority task blocks, effectively having the low priority
of the task that holds the read lock for the duration that the read lock is held by the lower priority task. This
priority inversion can be for an unbounded duration because any unrelated task with priority between that
of the low and high priority tasks can run during the priority inversion thus preventing the low priority task
from releasing the read lock and allowing the high priority task to run.

A way to deal with this scenario is to use an ad hoc priority ceiling protocol. Before a task takes a read or
write lock, raise the priority of that task to the maximum priority of all tasks that lock the rwlock. After
releasing the lock, lower the priority to the original value. In VxWorks taskPrioritySet() is useful for this
approach. With this approach it is clear that priority ordering on the wait queues is pointless so there is no
need to use RW_WRQ_PRIO. This is a good approach for managing priority inversion problems and
guaranteeing neither readers nor writers starve when tasks of medium priority cannot be avoided.

With care a band of priorities can be used for tasks that that use a shared readers writer lock. In this situa-
tion no other tasks run in this range of priorities. With no tasks unrelated to the rwlock of medium priority
the priority inversion is bounded. This approach can be used to give different priorities to various tasks that
acquire read and write locks to the same rwlock.

In both the priority ceiling and priority band approaches described above it is important to take into account
situations when tasks may have their priority temporarily adjusted. In particular these two approaches do
not mix well with the priority inheritance protocol which VxWorks implements for its mutual exclusion
semaphores. The problem is that the use of a mutual exclusion semaphore with priority inheritance can be
buried under a seemingly unrelated API. For example the default memory partition in VxWorks is a shared
resource and thus API functions such as malloc() and free() are likely to use mutual exclusion semaphores
with priority inheritance within their implementation. It is a good idea to only call functions which
VxWorks allows to be called from interrupt context and those guaranteed not to block within critical
regions when using the priority ceiling or priority band approaches.

In the VxWorks priority inheritance protocol, the priority of a task that holds a mutual exclusion semaphore
with priority inheritance is temporarily increased to the priority of a higher priority task that blocks while
attempting to take the same semaphore. If the task that holds the semaphore is blocked on another mutual
exclusion semaphore with priority inheritance, the priority of the task holding that semaphore will be ele-
vated as well. This elevation of priority follows the entire chain of tasks blocked on mutual exclusion
semaphores taken and shared between the involved tasks. Thus VxWorks uses chaining in its implementa-
tion of a priority inheritance protocol. For all the tasks with elevated priority, their priority is only restored
when the task releases all of the mutual exclusion semaphores it has taken. The priority will remain ele-
vated when the task releases the semaphore which caused the priority inheritance to take place, if the task
with an elevated priority continues to hold other mutual exclusion semaphores. It can be said the priority
inheritance protocol of VxWorks exhibits unbounded priority inheritance because of this behavior. Thus,
when considering the affects of the priority inheritance protocol in VxWorks to task priority, care must be
taken to consider the effects of nested taking of mutual exclusion semaphores especially carefully.

Another approach to use to mitigate the problems of rwlock synchronization is to make use of the timeout
to the rdlock() and wrlock() functions. If the lock cannot be acquired by your task within the timeout, then
that task can take appropriate action such as logging an error and dropping the data. With care a deadline
based approach can be a very useful approach in real time applications. For example, if a high priority
writer timed-out waiting to acquire a write lock, it could raise the priority of all tasks possibly holding read
locks and try to acquire the write lock again. Then when it has acquired the write lock it restores the priori-
ties of the other tasks to their original values. As with all real time applications that use a deadline

Fermilab MAY 2003 3



rwlock(3) Controls products: VxWorks libraries rwlock(3)

approach, be aware that the timeout is from when the task blocks to the time the task is unblocked and
placed on the ready queue. Other tasks and system interrupts can greatly affect scheduling latency both
before the task blocks and after the task unblocks but before it actually runs. This is a particularly impor-
tant consideration when using readers writer locks because all waiting readers are placed on the ready
queue simultaneously and run in priority order. Thus the time-outs that are chosen must budget for all other
possible running tasks and still meet the hard deadlines.

If you really have a system where priority inversion is not a problem, then you might as well run all of your
tasks at the same priority and use kernelTimeSlice(). Because there is a cost to every context switch on
any real hardware, tasks should only be of differing priorities when there is good reason for doing so.

The readers writer lock functions are multi-task safe, multiple tasks may call these functions concurrently
within the limits spelled out in the DESCRIPTION section. It is not safe to call any of the readers writer
lock functions from interrupt context or from a signal handler. Technically you can call the rwlock func-
tions from a signal handler but the code is not reentrant from the same task. A signal handler could inter-
rupt one of these functions and if that signal handler called any of the rwlock functions, this could corrupt
the internals of the rwlock itself. There is little incentive for the readers writer lock functions to be reen-
trant. For example take the case of a task that has called rdlock() on a rwlock. While the lock is held, the
same task receives a signal and the signal handler performs a rdlock() on the same rwlock. This is clearly
a programmer logic error because it is always an error to lock a rwlock that is currently locked. If you do
call these functions from a signal handler, only do so in a context when you know that the current task can-
not also be calling these functions. Be aware that many of the rwlock functions can block. There is very
little good reason and many problems with calling functions that can potentially block from a signal han-
dler. Please fully understand the consequences and restrictions of calling these functions from a signal han-
dler if you choose to do so.

rdlock() and wrlock() exhibit interesting behavior when a timeout is used and a signal is received. In such
a case, the call to rdlock() or wrlock() is interrupted, the signal handler is executed, and the rdlock() or
wrlock() is restarted with the original timeout. This can cause unexpectedly long delays and is caused by a
limitation of VxWorks where all functions are restarted, with their original time-outs, on your behalf after a
signal handler is executed. Probably for this reason alone it is not worth while to use signal handlers in a
real time VxWorks application save for handling of nonrecoverable errors.

Task deletion safety is limited in VxWorks. You may be interested in using taskSafe() and taskUnSafe()
where appropriate to give some protection to critical regions in your code synchronized with readers writer
locks. The rwlock functions themselves provide no task deletion safety themselves. If you wish for the
limited protection to task deletion that VxWorks can provide to be used for the calls to the rwlock functions
themselves, use taskSafe() and taskUnSafe() around all of the calls to the rwlock functions made.

If you follow the convention of first obtaining a write lock to a readers writer lock before calling
rwdelete(), do not misunderstand how this can be useful and how it can be misused. It is an error to call
any of the readers writer lock functions on a rwlock that has been or is being destroyed. Imagine that a
task is in the midst of acquiring a read lock to a rwlock when a higher priority task interrupts and acquires
a write lock and then destroys the rwlock. Later the lower priority task will run and dereference a pointer
to the now destroyed readers writer lock. Here a number of things can take place all of them bad and in the
category of errors where resources are used after they hav e been returned to the resource pool. If in the
meantime the address pointed to by rwp has not been reallocated, a stale memory location will be used.
Alternatively, rwp may point into a block of memory that has at this point been allocated for some other
use. In this case some other data will be corrupted. This data could even be a new readers writer lock that
has been created in the meantime. All of these errors are very difficult to locate and it beneficial to under-
stand and avoid them. What this technique is useful for is that it can be used to sequence the destruction of
a rwlock. All of the other tasks that block while trying to acquire locks to the rwlock after the write lock
has been acquired will return with an error when the task that acquired the write lock destroys that rwlock.

HISTORY
The first implementation of readers writer locks in VxWorks at Fermilab was written by Mike Sliczniak to
be used in Rich Neswold’s ErrLog module. This original implementation was based on the multireader
locks described in: UNIX Systems for Modern Architectures, written by Curt Schimmel. Later an improved

Fermilab MAY 2003 4



rwlock(3) Controls products: VxWorks libraries rwlock(3)

version was written by Mike Sliczniak to support time-outs and provide a simplified API.

AUTHOR
Mike Sliczniak

SEE ALSO
kernelTimeSlice, sysClkRateGet, taskPrioritySet, taskSafe, taskUnSafe,
VxWorks Programmer’s Guide, chapter 2: Basic OS

Fermilab MAY 2003 5


